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Abstract

In theory, long-term investors are expected to short overvalued assets and trade
against bubbles. We empirically investigate the optimal strategy of a utility-maxi-
mizing long-term investor, who learns of a bubble. We identify bubbles using a
Markov-regime switching model and proxy the growth rate of fundamental value us-
ing conventional asset pricing models. Applying our method to US industry returns,
we find that buy-and-hold investors with horizons longer than 6 months should short
the asset bubble. However, long-term investors who can rebalance their portfolios
within 4 months or less should actually ride the bubble. For these investors, a longer
horizon is even associated with an increasingly large investment in the bubble. Our
findings differ from the theoretical predictions because we empirically find that bub-
bles deflate over several months, while they burst in a single month in most theoretical
models.

Keywords: asset price bubbles, long-term investors, regime switching
JEL codes: G14,G11,C13
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1 Introduction

Bubbles pose a serious risk to investors’ wealth if they crash, but might also offer profitable

trading opportunities. From a theoretical perspective, the optimal strategy of a long-term

investor who learns of a bubble is not obvious. The efficient market hypothesis predicts

that investors short overpriced assets, independent of their horizon. However, in the limits-

to-arbitrage literature (see, for example, De Long et al. (1990a) and Shleifer and Vishny

(1997)), short horizons induce investors to refrain from trading against the bubble. If noise

traders cause prices to deviate from fundamental value for prolonged periods, investors with

short horizons might be forced to unwind their positions before the asset’s price returns to

fundamental value. Therefore, it is only optimal for long-term investors to trade against the

mispricing. Indeed, an infinitely lived agent would take sufficiently extreme short positions

to burst the bubble. De Long et al. (1990b) and Abreu and Brunnermeier (2003) suggest

that investors should ride the bubble at short horizons and sell out as the risk of the

crash increases. Empirically, Brunnermeier and Nagel (2004) show that hedge funds were

profitably riding the internet bubble, as they managed to time the crash and sold out

quickly.

In this paper, we investigate empirically the optimal strategy of a long-term utility-

maximizing investor, who learns of a bubble. We investigate the investor’s optimal asset

allocation decision for horizons of up to five years and varying rebalancing frequencies.

Arguably institutional investors with a long horizon likes pension funds, banks and in-

surances might not be able to rebalance their portfolios as quickly as the hedge funds in

Brunnermeier and Nagel (2004). In addition, they might also not have sufficient timing

skills to anticipate the crash.

We identify bubbles using a Markov-regime switching model as proposed by Hamilton

(1989, 1990). This methodology allows us to replicate the uncertainty a real-world investor

faces, it allows for sudden switches (in particular, from a bubble to a deflation regime),

and we can derive forecasts of the risk and return distributions over time. For our analysis

we use the 48 US industry portfolios from 1964 to 2009, as in Fama and French (1997).

Famous (perceived) bubbles often started in a specific industry.1 Examples are the recent

1For historical periods perceived to be a “bubble”, there is usually no perfect agreement on whether
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housing bubble (1998–2009), the internet bubble (1995–2000), the tronics boom (1959–

1962) or the railway mania (1840s).

Before the start of a bubble, one often observes an initial rise in prices that can be at-

tributed to fundamentally good news, for example the development of a new technology or

another significant innovation (Abreu and Brunnermeier (2003) or Kindleberger (2000)).

After some time however, investors become overenthusiastic or ’irrationally exuberant’.

They start extrapolating the higher growth rate too far into the future. A bubble starts

developing. To accommodate this pattern, we model a sequence of good news regimes, be-

fore we allow for the possible identification of a bubble regime. Although bubbles generally

burst in theoretical models, in reality bubbles deflate over several months (Brunnermeier

(2008)). We model the deflation of a bubble as a combination of a deflation-crash regime

which is associated with sharp price declines, and a deflation-normal regime, that captures

more tranquil periods. The deflation of bubble is always initiated by the deflation-crash

regime, but thereafter both deflation regimes can alternate. Besides the good news regime,

the bubble regime, and the two deflation regimes, our model also contains a normal regime

and a crash regime. We additionally include the crash regime to allow for crashes that are

not associated with bubbles, but, for example, simply due to bad news.

The investor infers the different regimes from past abnormal returns. To compute the

abnormal returns, we use three asset pricing models: the CAPM, the 3-factor model of

Fama and French (1993) and the 4-factor model of Carhart (1997). The good news regime

and the subsequent bubble regime are characterized by large positive mean abnormal re-

turns. The abnormal returns range from 3.05% per month for the 3-factor model to 3.41%

per month for the CAPM. Both regimes are rare. The ergodic probabilities show that one

can only expect the good news regime with a probability of about 2.5%. The probability

to be in the bubble regime is 2.67% for the CAPM-based results and 2.31% for the other

two models. The normal regime is by far the most common one with an ergodic probablity

of close to 90%. Mean abnormal returns in this regime are close to zero. The crash regime

is characterized by large negative abnormal returns, which are around -10% per month.

The predicted risk-and return distributions following the bubble regime provide first

the period was truly an overvaluation or whether the high prices could be justified by fundamentals. See

for example Malkiel (2010) for a discussion on historical bubble periods.
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insights into the investment implications of bubbles. Following the bubble regime, predicted

abnormal returns are very high at first, but they decrease quickly and become very negative.

For example, for the Fama-French Model, in the first month following the bubble regime,

the abnormal return is 57 basis points, and in the second month, it is still 10 basis points.

However, already in the third month, the abnormal return becomes negative and it is

close to -30 basis points. After about ten months, it reaches a low of -1.2%. The forecast

probabilities show that the sharp decline in returns can be attributed to a substantial

increase in the probability of the deflation regimes, in particular the deflation-crash regime.

Consequently, we then also find that volatility following the bubble regime is at first very

high. Over time volatility declines as the normal regime becomes more again more likely.

The findings are qualitatively similar for the three different asset pricing models.

We analyze the asset allocation decision of a power-utility investor who can choose

between the market and the typical industry. The optimal weights mentioned are for an

investor, who uses the Fama-French model to compute abnormal returns, but our findings

are similar across models. At first, we compare the optimal weight allocated by a buy-and

hold investor who is with certainty in the normal regime to a buy-and hold investor who

is with certainty in the bubble regime when he makes his allocation decision. An one-

month buy-and-hold investor who observes the normal regime allocates about 8% of his

wealth to the typical industry. His optimal weight increases as his horizon becomes longer,

and reaches a maximum of 14.5% for a two-year horizon. Thereafter, the optimal weight

decreases slightly to 11.6% for a five-year buy-and-hold strategy. Thus, coming from the

normal regime, we do not find any strong evidence of horizon effects for buy-and hold

investors. However, if the investor’s believes to be in the bubble regime with certainty

when he makes his investment decision, his allocation strongly depends on his horizon.

At very short horizons, the investor allocates a substantial fraction of his portfolio to the

industry bubble. For example, for a one-month horizon, the optimal weight is 21.2%. The

optimal weight declines as the investors horizon increases. It is 13.7% for a two-months,

buy-and-hold investor and only 2.8% for a four-months, buy-and-hold investor. A buy-

and-hold investor with a horizon longer than six months would take a short position. His

optimal weight is -3.8% and becomes more negative as his horizon becomes longer. For

a five-year horizon, his optimal weight declines to -14.6%. These findings suggest that
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long-term investors indeed optimally take a short position in bubbles.

However, this conclusion only holds for investors who are not able to rebalance at

reasonable frequencies. If we investigate the optimal strategy of investors who can rebalance

and learn, as in Guidolin and Timmermann (2007), we reach very different conclusions.

An investor who believes with certainty that he is in the bubble regime, has a one-month

horizon and can rebalance monthly, would allocate 21.2% to the typical industry (just the

same as the one-month buy-and-hold investor). If his horizon increases to one year, his

optimal weight rises to 25.5%. An investor who can only rebalance every four months still

has an optimal weight of 4% if his horizon is four months as well. Again, as his horizon

increases to one year, his optimal weight increases to 6.5%. For very long horizons of five

years, we find that the optimal weights decline again, but this decline is small.

We conclude that for investors who can rebalance at reasonable frequencies, longer

horizons might even induce them to ride bubbles more aggressively. Our findings suggest

that riding bubbles is not only optimal for short-term speculators, like hedge funds. Even

for investors who are not as sophisticated at hedge funds and have no timing ability,

investing in the bubble is profitable and optimal. Because bubbles empirically deflate

slowly, investors have time to liquidate their positions before they would lose all the gains

from participating in the rise of the bubble.

2 A Regime-Switching Model for Bubbles

2.1 Model Design

Our analysis is based on a regime switching model since it allows us to separately de-

scribe the price process in case a bubble continues to inflate, in case a a bubble deflates

by a series of crashes, and the base case in which no bubble is present. Evans (1991),

van Norden and Schaller (1999) and Brooks and Katsaris (2005) are examples of the use

of regime switching models to study asset price bubbles.

An advantage of using a regime switching model is the ease with which the actual

presence of the bubble can remain latent. As in reality, the investor does not know for

sure whether a bubble is present but has to make a probabilistic inference. In determining
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his optimal allocation he has to take into account that his inference may be wrong. This

approach allows us to describe a more realistic setting than most theoretical models, where

at least a fraction of investors knows with certainty that the price contains a bubble

component (see among others Abreu and Brunnermeier (2003), De Long et al. (1990b), or

De Long et al. (1990a)).

We let the latent process for the presence of a bubble be governed by a first order

Markov chain. With a certain probability, the process can switch from one state to an-

other and eventually to the bubble state. This switch can correspond with a displace-

ment in a Minsky model (see Kindleberger, 2000) or “new economy thinking” as in Shiller

(2000). Once the process switched to the bubble state, it can remain there for the follow-

ing periods or leave it with a crash. We deviate from van Norden and Schaller (1999) and

Brooks and Katsaris (2005), who do not use a Markov chain. In their studies, the latent

process of a bubble evolves much more gradually and cannot accommodate the sudden

switches that are considered typical characteristics of bubbles (see for example Figures 2

and 3 in Brooks and Katsaris, 2005).

Besides by a sudden change, bubbles are characterized by a price that grows faster than

fundamental value. While such exuberant growth is present in all bubble models, we tie

it directly to an asset pricing model like the CAPM or a multi-factor model. We do not

assume that the fundamental growth rate is simply given, as is typical for the theoretical

rational bubble literature (see, for example, Blanchard and Watson, 1982), nor do we tie

it to dividends as many articles on testing for bubbles propose (see Flood and Hodrick,

1990, for an overview).

In our setting, structural growth beyond what can be explained from covariance with

systematic risk factors (or, equivalently, the pricing kernel) is considered a bubble. We

do not require that bubble growth is constant over time. Instead, we allow a stochastic

growth rate which is strictly positive in expectation as in Brooks and Katsaris (2005).

Mathematically, the asset return ri,t obeys

ri,t = rf,t + β′
ift + ωiui,t(Si,t), (1)

where rf,t is the risk-free rate, ft denotes the vector of realizations of the (traded) risk

factors, βi the vector of sensitivities to the risk factor, ωi an asset-specific scale factor that
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influences the idiosyncratic volatility, and ui,t(Si,t) an innovation, independent from ft,

and depending on a latent state variable Si,t. The first two terms capture the systematic

part of the asset return. The last term captures the idiosyncratic part of the asset return,

which may contain a bubble depending on the realization of Si,t.

The latent process Si,t can be in one out of fixed set of regimes. In the normal regime N,

no bubble is present, and the asset price grows at the fundamental growth rate. Under the

normal regime, the innovation ui,t follows a normal distribution. Its expectation, denoted

by µN, will be close to zero. To ensure identification, we impose that the variance is equal

to 1. This restriction gives ui,t in regime N the interpretation of a standardized abnormal

return.

The next regime we consider is the good news regime. When good news arrives, the

asset moves to the good news regime. It takes L periods before good news is incorporated

into prices. To capture this aspect in our model, we introduce L copies of the good news

regime, Gl, l = 1, 2, . . . , L. If the process is in good news regime Gl at time t, it moves to

Gl+1 with certainty at time t+1. In each of these regimes, the innovation follows a normal

distribution whose mean is higher than in the normal regime, and whose variance is equal

to 1. A switch to the good news regime thus means that the distribution of ui,t is shifted

to the right.

After L periods of good news regimes, the good news has been incorporated into prices.

Because investors extrapolate price growth, a bubble occurs. The regime process then

moves to the bubble regime B. Because this regime is an extrapolation of the good news

regimes, it has the same mean and variance as these regimes. Because the bubble need not

continue in the next period, the process can either stay in the bubble regime for another

period or exit by switching to the crash state, which marks the beginning of the deflation.

The crash state marks the beginning of the deflation of the bubble. The deflation can

take place in two forms. It always starts with a crash, but is also possible that the asset

shows relatively normal behavior. Therefore we introduce two regimes: a deflating crash

regime DC and a deflating normal regime DN. When the deflating crash regime takes

place, the innovations should be substantially negative. To ensure that they fall below a

specific value k, the innovations follow a linear transformation of a lognormal distribution,

Y = k − exp(Z), where Z follows a normal distribution. This approach is commonly used
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in articles that model negative jumps in asset returns, such as Das and Uppal (2004). For a

discussion on the relation between bubbles and crashes, see McQueen and Thorley (1994).

In the deflating normal regime, innovations show the same behavior as in the normal

regime. The difference between the normal regime are the transitions. When in the

deflation normal regime, the process can either stay in it, or switch back to deflation

crash regime. When the deflation is completed the process switches from the deflation

crash to the normal regime.

Because not all crashes have to be attributed to bubbles, we include a second crash

regime C. This regime has the same distributional parameters as the deflating crash regime,

but the process can enter this regime from the normal regime, and exit it to the normal

and good news regime.

We summarize the distribution for ui,t(Si,t):

ui,t ∼























N(µN, 1) if Si,t = N,DN

N(µB, 1) if Si,t = B,Gl, l = 1, 2, . . . , L

k − eZ , Z ∼ N(µC, σ
2
C) if Si,t = DC,C

(2)

While the distributions of ui,t conditional on Si,t have well-defined characteristics, the

distribution of ui,t unconditional on a specific regime will show time-varying volatility, and

exhibit skewness and excess kurtosis (cf. Timmermann, 2000).

We summarize the transitions in a graph in Figure 1, and the corresponding transition

matrix in Table 1. Our model contains 5 + L states, but we impose a specific structure

on the transitions to ensure identification. As we expect the occurrence of good news to

be unrelated to whether the preceding regime was a normal or crash regime, we impose

pNG = pCG. The total number of transition probabilities to estimate is seven.

[Figure 1 about here.]

[Table 1 about here.]

By including these restrictions, we intend to put enough structure on our model to

ensure that we indeed detect bubbles, and to preserve enough flexibility to infer from

return series how bubbles actually occur. The restrictions prevent that a single-period
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large return is identified as a bubble. By explicitly imposing that bubbles are ended by

one or more crashes, a prolonged adjustment of fundamental value due to a market under-

reaction is not likely to be identified as a bubble. The persistence of bubbles and their

average growth rate are free parameters to be estimated.

2.2 Estimation and Inference

The investor does not know in which regime the process is at any point in time. Instead,

he has to infer the current regime and form an expectation on future regimes and their

risk-return trade-off. His information set Ψt at time t contains the time-series of returns

and risk factors from t0, the beginning of the sample period, to t. He applies a filtering

procedure to infer with which probabilities the different states currently prevail. This

procedure uses the following recursive relation to construct a times series of vectors of

forecast probabilities ξτ |τ−1 and inference probabilities ξτ |τ for each state s (see Hamilton,

1994, Ch. 22), where τ ranges from t0 to t:

ξτ |τ−1 = Pξτ−1|τ−1 (3)

ξτ |τ =
1

ξ′
τ |τ−1g(uτ )

ξτ |τ−1 ⊙ g(uτ), (4)

where g() is the vector of the probability density functions of the different states, P is the

transition matrix, and ⊙ denotes the Hadamard product. The procedure starts with infer-

ence probabilities for t0 − 1. The forecast probabilities give a forecast of the state process

for period τ , conditional on information up to period τ−1. When the information (i.e. the

returns) of period τ becomes known, a Bayesian update is applied to arrive at the inference

probabilities. We estimate the distribution parameters, transition probabilities and initial

regimes probabilities at t0−1 by recursively applying the Expectation Maximization (EM)

algorithm of Dempster et al. (1977) which yields maximum likelihood estimates (see also

Hamilton, 1993). Since no history before t0 is available we restrict the initial probabilities

for the good news and bubble regime to be equal. We also put this equality restriction on

the initial probabilities for the crash and deflation crash regime.
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2.3 Estimation results

We estimate the model for monthly returns of the 48 industries as used by Fama and French

(1997), which are available on French’s website2. Our dataset starts in July 1963 when the

CRSP database is extended by stocks traded on the AMEX. It ends in December 2010.

We consider the CAPM and the models by Fama and French (1993) and Carhart (1997)

as asset pricing models. We put the sequence of good news equal to L = 6 months, and

set the threshold for crashes at k = −1. We report the industry-specific results in Tables 2

to 4 and the regime-switching parameters in Table 5.

[Table 2 about here.]

The industry-specific estimation results for the CAPM in Table 2 shows market-βs

that are centered around one, ranging from 0.55 to 1.39. Their average equals 1.05. The

estimates for the scale factor ω indicate considerable cross-sectional variation in volatility,

as they range from 2.54% to 9.74%. The average equals 4.06%.

The regime-switching part of Equation (1) relates to the idiosyncratic part of the re-

turns. To have a view on the properties that the regime switching part should capture,

we construct the abnormal returns as ri,t − rf,t − β̂′
ift. The averages of the abnormal re-

turns which vary from -0.34% to 0.67% per month indicate that some industries have large

pricing errors, but the pooled average pricing error of 0.12% per month is close to zero.3

So averaged over time and industries, the effect of bubbles should be limited. The stan-

dard deviations of the abnormal returns exceed the corresponding scale factors, because

the regime switching model for the innovations contributes to the idiosyncratic volatility.

Moreover, it makes that volatilities time-varying. The coefficients of skewness and kurtosis

2The data can be downloaded from the Kenneth French Data Library at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We have used the

set of industry returns constructed with the new specifications.
3We cannot conduct a traditional GRS tests, because our model does not assume that residuals are

i.i.d and normally distributed. Neith can we use the J-test advocated by Cochrane (2005). This test tests

whether the moment conditions of zero pricing errors overidentify the model. Our model is estimated

by maximum likelihood, and its first order conditions do not include conditions on the pricing errors per

industry.
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varies from -0.41 to 1.41 and from 3.32 to 16, with averages equal to 0.23 and 5.86. The

positive skewness may point at positive returns due to bubbles. The excess kurtosis indi-

cates more extreme returns than a single regime with a normal distribution would imply.

As shown by Timmermann (2000), regime switching models can flexibly accommodate

non-zero skewness and excess kurtosis.

Because the CAPM may fail to explain the cross-section of industry returns, we next

consider the three-factor model of Fama and French (1993). The vector of risk factors

contains the excess market return, the SMB-factor for size and the HML-factor for value.

Table 3 shows that many industries have sizeable exposures to these factors. For the size

factor, they range from -0.32 to 0.90, and for value from -0.54 to 0.73. The averages of 0.20

and 0.17 indicate that our set of industries is slightly tilted towards small value industries.

Despite the inclusion of additional factors the scale factors in the residuals decrease only

slightly to on average 3.87% (range from 2.38% to 9.68%).

[Table 3 about here.]

The additional factors leads to a decrease of the residuals. Their averages range from

-0.83 to 0.63 with an average of 0. Also for the Fama-French model, some industries have

large pricing errors, but the overall error is small. Skewness and excess kurtosis remain

defining features of the abnormal returns. They do not seem to change much compared to

the CAPM results, so the regime switching models are likely to have similar properties.

Because the sequence of good news and bubbles in our model bares some resemblance

to momentum, we also consider the model of Carhart (1997), in which a momentum factor

is added to the three risk factors of the Fama-Frech model. The exposures to this factor

in Table 4 are relatively small (between -0.36 and 0.21) and on average negative (-0.05).

Compared to the Fama-French model, the residuals show only slight changes.

[Table 4 about here.]

Table 5 shows the estimation results of the regime switching model. Panel A shows

the distribution parameters of the different regimes. In Panel B, these parameters are

transformed into means and volatilities. The transition probabilities are reported in Panel
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C. The expectation of the standardized abnormal returns in the normal regime are very

close to zero. They range from 0.013 for the Fama-French model to 0.036 for the CAPM.

Using the average value of the scale factors to transfer these estimates to expected abnormal

returns in Panel B, we find expected values between 0.05% (Fama-French model) and

0.15% per month (CAPM). We conclude that during the normal regime, innovations do

not systematically deviate from the fundamental part of the asset pricing model.

[Table 5 about here.]

When the good news or bubble regimes prevail, the expectations of the standardized

returns exceed those for the normal regime by far with values between 0.789 (Fama-French

model) and 0.841 (CAPM). These estimates imply that the abnormal returns are on average

between 3.05% and 3.41% per month. The standard errors indicate that the expected values

are estimated quite precise. So, during sequences of good news and bubbles, we can expect

to see sizeable increases in price.

The flip side of bubbles in our model are crashes. The location parameter µC and scale

parameter σC of the lognormal distribution that prevails during crashes vary between 0.278

(CAPM) and 0.281 (Carhart model), and 0.638 (Fama-French model) and 0.642 (Carhart

model). Based on these numbers, the expected abnormal return during crashes ranges from

-10.04% (CAPM to -10.64% (Carhart) model. The volatility is also higher during crash

than during the other regimes with values between 4.44% (Carhart model) and 4.68%.4

Crashes pose a serious danger for each investors who wants to speculate on bubbles.

Panel C of Table 5 contains the transition probabilities that result from the estimation

(we exclude the probabilities that are fixed at zero or one). The normal regime is highly

persistent. The process stays in the normal regime for another period with a probability

of 0.0994 (CAPM and Carhart model) or 0.995 (Fama and French model). A switch to

the good news regime G1 is rare with a probability of approximately 0.005 (once per 200

months). So a switch to a sequence of good news, bubbles and eventually crashes does not

happen very frequently in our sample.

4For a transformed lognormal random variable Y = ω(k − eZ) with Z ∼ N(µ, σ2), the expectation

follows as ω(k − exp(µ+ 1

2
σ2)) and the standard deviation as ω exp(µ+ 1

2
σ2)

√

exp(σ2)− 1.
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The bubble regime exhibits persistence, too. With estimates ranging from 0.797 (Carhart

model) to 0.833 (CAPM), this persistence is much smaller than for the normal regime. The

average length of a bubble ranges from 1/(1−0.797) = 4.93 to 1/(1−0.833) = 5.98 months.

These months come after the fixed sequence of L = 6 months of good news. The expected

gain due to a bubble is consequently some 4.93× 3.16 = 15.6% to 5.98× 3.41 = 20.4%. Of

course, the bubble length can deviate from these expected values.

When the bubble ends, a crash marks the start of a period of deflation. With a

probability of 0.224 (Fama-French model) to 0.251 (CAPM), the process switches to the

normal regime, which indicates that the deflation is finished. With a probability of 0.175

(CAPM) to 0.191 (Fama-French model) another crash occurs. So the deflation crash regime

is not as persistent as the normal regime or the bubble regime. Still, the risk of another

crash is non-negligible. With the remaining probability of 0.574 (CAPM) or 0.585 (the

other two models), the process switches to the deflation normal regime. This regime has

the same distributional properties as the normal regime, but a much higher probability of

a switch to the deflation crash regime of 0.268 (Carhart model) to 0.289 (CAPM). In both

deflation regimes, the risk of future negative returns stays high.

The standard errors on the transition probabilities indicate that they are well identified.

The only exception is the crash regime that is unrelated to bubbles. This regime has a

very small probability to occur after the normal regimes, with values of 0.0014 (CAPM)

or lower. When such a switch occurs, more crashes can follow, but the estimates for that

switch have relatively large standard errors. We conclude that our model relates most of

the crashes in our sample to bubbles.

In Table 6 the ergodic probabilities are shown. They present the probability that the

investor assigns to the different regimes if he has no historical information. They can

be interpreted as steady-state probabilities. In line with our findings for the transition

probabilities, the normal regime is most likely with probabilities between 0.885 (Carhart)

and 0.891 (CAPM). Each good news regime has an ergodic probability of around 0.0045,

so together this adds up to a probability of around 2.7%. The ergodic probabilities for

the bubble regimes are slightly lower and range from 0.0231 (Fama-French and Carhart

models) to 0.0267 (CAPM). The steady state probability of the deflation crash regime has

the same order of magnitude (between 0.0178 and 0.0197), whereas the deflation normal
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regime is approximately double (between 0.0354 and 0.0430). So, in the long run, deviations

from the normal regime do not have a high probability. The multiplication of the ergodic

probabilities by the means of the different regimes gives the model implied expected returns.

They equal 0.10% per month for the CAPM, -0.01% for the Fama-French model, and 0.04%

for the Carhart model. So, in the long run, the industries do not offer abnormal returns

that deviate much from zero in expectation. Of course, in the short run information from

prices may indicate differently.

[Table 6 about here.]

Figure 2 shows the distribution of the different regimes over time. We see a pronounced

increase in the number of industries experiencing a bubble at the end of the century when

the internet bubble occurred. It seems that it was also a period of higher than average

volatility as several industries experienced crashes during these years as well. Especially for

the CAPM and the 3-Factor Model, we find, in line with the bursting of the bubble, a sharp

increase in the number of industries experiencing deflation around 2000. Our model also

relates the recent credit crisis to some extent to bubbles. Our model also identifies earlier

bubbles, like the “Bubble in Concept Stocks” in 1967–68 as coined by Malkiel (1996) (see

also Baker and Wurgler, 2006). The distribution of bubbles across industries in Table 7

shows that the different regimes are well distributed across the different industries. It

seems that no single industry in particular is driving our findings.

[Figure 2 about here.]

[Table 7 about here.]

2.4 Forecasts

The investor uses the model to make forecasts for future periods m. For the current

probability distribution over the regimes ξt, the m-period ahead forecast probabilities can

be calculated as ξt+m|t = Pmξt. When the investor only has price information, his current

probability distribution equals the inference probabilities in Equation (4). Based on the
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forecast probabilities and the probability density functions, he constructs the forecasted

distribution of the innovations gt+m(u):

gt+m(u) = ξ′
t+m|tg(u). (5)

The m-period-ahead forecast of the innovation distribution consists of the probabilities

of the different states and their respective distributions. Along the same lines, any raw

moment of order n can be calculated as a sum of state-specific moment weighted by the

states’ forecast probabilities:

Et

[

un
t+m

]

=
∑

s∈S

ξt+m|t(s) E[u
n
t+m|St+m = s]. (6)

Figure 3 shows the forecast probabilities when the investor is certain that the asset

currently experiences a bubble, Pr[St = B] = 1. In the short run, the investor expects the

bubble to continue. The probability that the return process stays in the bubble regime for

the following month, ranges from 0.797 (Carhart model) to 0.833 (CAPM). Two months

later, the probability is still between 0.64 and 0.69. The probability that the bubble

continues declines rapidly over time. After 4 months, the probability that the bubble has

ended is larger than the probability that it continues.

[Figure 3 about here.]

The probability of a crash is close to 0.20 for the first few months. The forecast for

the month t + 1 follows from Table 5 and varies from 0.167 (CAPM) to 0.203 (Fama-

French model). In t+ 2 this probability is the sum of the probability that a second crash

follows the first, and that the bubble ends in this period. For the CAPM this yields

0.833 × 0.167 + 0.167 × 0.175 = 0.169, which is a bit higher than the probability for first

month. For the Fama-French and Carhart models these probabilities are 0.188 and 0.198.

In the first five to ten months, the probability of the deflation crash regime stays high.

After month 10 it slowly declines.

The deflation normal regime can show up for the first time in month t + 2, when the

bubble has burst in month t + 1. For the CAPM, this probability equals 0.167× 0.574 =

0.096. For the other two models we find 0.110 and 0.119. The probability that the process
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is in the deflation normal regime steadily increases to a maximum between 0.312 (CAPM)

and 0.357 (Carhart model) in month 10. After month 10 we see a slow decline setting in.

The normal regime can also show up for the first time in month t + 2, which means

that the deflation is over after month t+1. For the CAPM, this probability equals 0.167×

0.251 = 0.042 (Fama-French model: 0.042; Carhart model: 0.048). The probability that

the deflation is completed after month t + 2 is 0.095 for the Carhart model and 0.084 for

the other two. This probability increases slowly at first. It takes 15 to 16 months before

the probability of the normal regime exceeds 0.5

After month t+45 the predictions are close to the steady-state distribution that follows

from the ergodic probabilities in Table 6. From month t+45 to month t+60, the forecasts

do not change much anymore, which is why we do not look beyond a horizon of 5 years.

Combining the forecast probabilities and the expected abnormal returns of the different

regimes produces the forecasts for the expected abnormal returns and their volatilities in

Figure 4. We consider three different initial probability distributions, corresponding with

a certain start from the bubble regime (Pr[St = B] = 1), a certain start from the normal

regime (Pr[St = N] = 1), and a start where the initial probability distribution is equal to

the ergodic probabilities.

[Figure 4 about here.]

For all three asset pricing models, the forecasts for the expected returns starting from

the bubble regime show the same pattern. Expected abnormal returns for month t + 1

are positive. They steeply decline and become negative after two or three months. They

reach their minimum around month 12, after which they slowly increase again. The speed

of their increase goes down, and it takes quite some months before they become close to

zero. After 60 months, the expected returns are close to the ergodic predictions, which are

constant by construction. While the structure of the forecasts is the same for each model,

the actual forecasts show some variation. The forecast for the first month for the CAPM

equals 1.06%. The most negative forecast is -0.94 in month t+11. The forecasts based on

the Fama-French or Carhart models start much lower (0.57% and 0.48%), and become a

bit more negative at -1.17% and -1.09%. For a bubble riding strategy, the forecasts of the

latter two models are hence less favorable.
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For a comparison, we also show the forecasts from the normal regime. These forecasts

also show similar forecasting patterns for the different asset pricing models. First they

increase, which is related to switches to the good news regimes. After some 10 months,

these favorable switches are offset by switches to the deflation regimes. The forecasts

then decline towards the ergodic forecasts. The forecast for month t + 1 equals 0.15% for

the CAPM, 0.06% for the Fama-French model and 0.10% for the Carhart model. These

forecasts increase maximally by aproximately 0.08%. The dynamics in our model are

clearly concentrated in the bubble and crash regime.

The forecasted volatilities after the bubble regime also show similar properties (the

right panels of Figure 4). They start high (CAPM: 6.70%; Fama-French model: 6.51%;

Carhart model: 6.67%), because only the two extremes of bubble continuation and deflation

crash are possible. Over time, the volatility forecasts decline, because the probability of the

more neutral normal and deflation normal regimes increase. After 60 months the forecasted

volatilities are close to the ergodic volatility forecasts.

The forecasted volatilities after the normal regime show the opposite properties. They

start low, then increase with a pace that goes up after month t+6, and eventually converge

to the ergodic volatility forecasts. The slow increase in the first few months is related to

the small increase of the probability of the good news and bubble regimes. After month

t + 6, the deflation crash regime can occur, which causes a slightly sharper increase in

volatility.

Our finding that bubbles initially lead to positive expected abnormal returns, but also

leads to higher volatility is in line with the evidence in Guenster et al. (2012) for a one

month horizon. We show that this result extends to month t+ 2 as well (and month t+ 3

in case of the CAPM), though the risk-return trade-off has declined. In line with the

limits-to-arbitrage literature, we show that the correction of a bubble is accompanied by

higher volatility, in particular for short horizons. We investigate the implications of these

return patterns for investors in the next section.
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3 Allocations in the presence of a bubble

3.1 The investment problem

We derive the optimal response of an investor to the presence of a bubble in an expected

utility framework. We investigate how his decision depends on the investment horizon,

and on the possibilities to rebalance. The investor is currently at time t, and has a power

utility function defined over terminal wealth M periods ahead,

U(Wt+M ) =
W 1−γ

t+M

1− γ
, Wt+M > 0, γ 6= 1, (7)

where γ is the investor’s coefficient of relative risk aversion. For Wt+M ≤ 0, the investor

is bankrupt and we set his utility to −∞. When γ = 1 the investor has log utility,

U(Wt+M ) = logWt+M .

The investor maximizes this utility function by choosing a sequence ofK portfolios, each

for a horizon of h = M/K months atK equally spaced points t, t+h, t+2h, . . . , t+(K−1)h.

Our interest is mainly in the setting where the investor trades every month, K = M and

h = 1, or follows a buy-and-hold strategy, K = 1 and h = M . This framework can also

handle the situation where unwinding positions takes more months (1 < h < M).

At each point t + hk, k = 0, 1, . . . , K − 1 the investor constructs a portfolio with a

fraction wk of her wealth Wt+hk in a possibly bubbly industry for the coming h months,

and the remainder in the market. As in Guidolin and Timmermann (2007) we assume that

the riskfree rate is constant and equal to rf. We assume that the industry is an “average”

industry, with a market beta of one, and no exposure to size, value or momentum, or any

other factor,

ri,t+τ = rf + fm,t+τ + ωiui,t+τ (Si,t+τ ), (8)

where fm,t+τ is the excess return on the market over month t + τ .
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Consequently, the investor solves the following problem

max
{wk}

K−1
k=0

E [U(Wt+M )| ξt] (9)

s.t. Wt+h(k+1) = Wt+hk

(

wkRi,t+hk,h + (1− wk)Rm,t+hk,h

)

(10)

Ri,t+hk,h ≡

h
∏

τ=1

(

1 + ri,t+hk+τ

)

(11)

Rm,t+hk,h ≡

h
∏

τ=1

(

1 + rf + fm,t+hk+τ

)

. (12)

The investor maximizes her expected terminal wealth, conditional on the current prob-

ability distribution over the different regimes, denoted by ξt. Equation (10) gives the

evolution of wealth and incorporates the budget restriction. This evolution is a function

of the compounded return over h periods on the industry, Ri,t+hk,h, and on the market

Rm,t+hk,h, which are defined in Equations (11) and (12). To answer our research question

we investigate how the initial portfolio weight w0 depends on the probability of the bubble

regime at time t, ξB,t.

To solve this maximization we derive the Bellmann equation and use dynamic program-

ming as in Brandt et al. (2005); Guidolin and Timmermann (2007). First, we define the

value function

V (Wt, ξt) ≡ max
{wk}

K−1
k=0

E [U(Wt+M )| ξt] s.t. Equation (10). (13)

Because power utility has CRRA, we can without loss of generality maximize the com-

pounded return Wt+M/Wt. Substituting Equation (10) yields

V (1, ξt) = max
{wk}

K−1
k=0

E [U(Wt+M/Wt)| ξt]

= max
{wk}

K−1
k=0

E

[

1

1− γ

K−1
∏

k=0

(

wkRi,t+hk,h + (1− wk)Rm,t+hk,h

)1−γ

∣

∣

∣

∣

∣

ξt

]

(14)

Next, we apply the law of iterated expectations

V (1, ξt) = max
w0

E
[

(

w0Ri,t,h + (1− wk)Rm,t,h

)1−γ
×

max
{wk}

K−1
k=1

E

[

∏K−1
k=1

(

wkRi,t+hk,h + (1− wk)Rm,t+hk,h

)1−γ

1− γ

∣

∣

∣

∣

∣

ξt+h

]
∣

∣

∣

∣

∣

ξt

]

.
(15)
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We define a new function Q based on the second maximization in this equation,

Q(k, ξt+hk) ≡ (1−γ) max
{wj}

K−1
j=k

E

[

∏K−1
j=k

(

wjRi,t+hj,h + (1− wj)Rm,t+hj,h

)1−γ

1− γ

∣

∣

∣

∣

∣

ξt+hk

]

. (16)

Combining Equations (15) and (16) leads to the Bellmann equation

1

1− γ
Q(k, ξt+hk)

=max
wk

E
[

U
(

wkRi,t+hk,h + (1− wk)Rm,t+hk,h

)

Q(k + 1, ξt+h(k+1))
∣

∣ ξt+hk

]

,
(17)

for k = 0, 1, . . . , K − 1 with final condition Q(K, ξt+hK) = 1. The first order condition to

Equation (9) can then be formulated as

E

[

Ri,t+hk,h −Rm,t+hk,h
(

w∗
kRi,t+hk,h + (1− w∗

k)Rm,t+hk,h

)γQ(k + 1, ξt+h(k+1))

∣

∣

∣

∣

∣

ξt+hk

]

= 0, (18)

for k = 0, 1, . . . , K − 1.

Because ξt+h(k+1) and Ri,t+h(k+1) are not independent, we cannot split the expectation of

the product in the product of the expectations. As in Guidolin and Timmermann (2007) we

assume optimal learning by the investor: he uses the information in ri,t+h(k+1) to update

his belief about the probabilities of the different states. First he constructs a vector of

forecast probabilities

φt+h(k+1)|t+hk = P hξt+hk, (19)

which she then updates with the last innovation ui,t+h(k+1) by Bayes’ rule

ξt+h(k+1) =
1

φ′
t+h(k+1)|t+hk

g
(

ui,t+h(k+1)

)φt+h(k+1)|t+hk ⊙ g
(

ui,t+h(k+1)

)

, (20)

where g(u) is the vector with the values of the regime-specific density functions for u. The

same rules are applied in the Hamilton filter for the actual observations (see Equations (3)

and (4)).

The application of the Bellmann principle of optimality (see Bellmann, 1957) splits the

problem of findings a series of K optimal portfolios into a series of K problems of finding

a single optimal portfolio. This series of problems is solved backwards, starting with the

problem in Equation (17) for portfolio for K − 1 and using Q(K, ξt+hK) = 1. Solving this
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problem produces a set of optimal portfolios w∗
K−1 for different values of ξt+h(K−1), and

the corresponding values for the function Q(K − 1, ξt+h(K−1)). These values are then used

when solving the problem in Equation (17) for the optimal portfolio w∗
K−2 and so on, until

the optimal portfolio w∗
0 for time t is determined.

There are three special cases that deserve some extra attention. When the investor

follows a buy-and-hold strategy, learning becomes irrelevant. The investor chooses a single

portfolio w0, which is held for M periods. The set of first order conditions given by

Equation (18) reduce to

E

[

Ri,t,M − Rm,t,M
(

w∗
0Ri,t,M + (1− w∗

0)Rm,t,M

)γ

∣

∣

∣

∣

∣

ξt

]

= 0. (21)

When the investor can rebalance every period, the evolution of wealth in Equation (10)

satisfies Wt+k+1 = Wt+k

(

1 + rf + fm,t+k+1 + wkωi,t+k+1ui,t+k+1(Si,t+k+1)
)

. The first order

conditions in Equation (18) reduce to

E

[

ωi,t+k+1ui,t+k+1(Si,t+k+1)
(

1 + rf + fm,t+k+1 + w∗
kωi,t+k+1ui,t+k+1(Si,t+k+1)

)γQ(k + 1, ξt+k+1)

∣

∣

∣

∣

∣

ξt+k

]

= 0, (22)

for k = 0, 1, . . . ,M .

When the investor has log utility, the investor maximizes

logWt+M = logWt +
K−1
∑

k=0

log
(

wkRi,t+hk,h + (1− wk)Rm,t+hk,h

)

. (23)

We find the usual result that the investor takes a myopic decision. In this case, learning is

not relevant for the investor. The first order conditions in Equation (18) reduce to

E

[

Ri,t+hk,h − Rm,t+hk,h

w∗
kRi,t+hk,h + (1− w∗

k)Rm,t+hk,h

∣

∣

∣

∣

ξt+hk

]

= 0, (24)

for k = 0, 1, . . . , K − 1.

3.2 The buy-and-hold decision

We first analyze the decision of a buy-and-hold investor. While this strategy may not be the

most realistic, because it means that investors do not update their portfolio at all during

their investment horizon, this strategy is an interesting benchmark case. Decisions in which
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the investor takes rebalancing opportunities into account can be seen as a sequence of buy-

and-hold decisions for a shorter horizon. It can clarify how learning affects the decision of

an investor.

The optimal portfolio of a buy-and-hold investor follows from the first order condition

in Equation (21). We cannot analytically solve for w∗
0, but use numerical techniques based

on simulations instead. We simulate return paths with a length of M months. We use

bootstraps to simulate from the distribution of the excess market returns, and Monte Carlo

draws from the regime process and the distribution of the innovations. We fix the risk-free

rate at 0.30%, which is close to its long-term average. For each simulation b we calculate

the values for Rb
i,t,M and Rb

m,t,M by compounding the monthly returns. We approximate

the expectations in Equation (21) by B = 100, 000 simulations, and then solve for w∗
0.

First we consider the term structure of the risk-return trade-off following Campbell and Viceira

(2005) in Figure 5. It shows the averages and the volatilities of the cumulative returns

for different initial probability distributions, scaled to a monthly horizon. For all three

asset pricing models, the expected returns are positive and large, when the asset is with

certainty in a bubble. The expected returns for month t+1, varying from 0.89% to 1.14%

are higher than the abnormal return for the same month in Figure 4, because the fun-

damental part of the return, the risk-free rate and excess market return, are taken into

account. Because the expectations of the abnormal returns go down and become negative,

we see a downward sloping pattern for the expectation of the cumulative returns. Because

of the cumulation, it takes much longer before these expectations become negative: eight

months for the Fama-French and Carhart models, and twelve for the CAPM. It takes some

45 months, before the expected cumulative returns become positive again, though they are

still below the risk-free rate of 0.30%. We conclude that bubbles offer an attractive return

at short horizons, thought they decline fast. For horizons of one to four years, expected

returns are negative, which entices short-selling.

[Figure 5 about here.]

Deciding whether an asset forms an attractive investment opportunity also depend on

the risk that it entails. Therefore we also show the volatilities in Figure 5. The volatilities

start between 8.05% (Carhart model) and 8.8% (CAPM). In the first months they show
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a steep increase to a maximum of 8.8% after six months for the Carhart model, 9.0%

for the Fama-French model after eight months or 10.3% after ten months for the CAPM.

After the maximum a slow decline sets in. After sixty months, the volatilities are again

close to their values for month t+1. As argued by Guidolin and Timmermann (2007), the

increase in volatility relates to the persistence of regimes, which has a mean-averting effect

and is opposite to the decreasing volatilities that result from VAR-style mean-reversion

in Campbell and Viceira (2005). The decline for longer horizons relates to the dominance

of the normal regime in the long-run predictions. Combining the expected returns and

volatilities graphs shows that bubbles are attractive at first. However, this attraction

disappears rapidly, because expected returns go down, while volatilities go up. When

expected become negative, and volatilities go down again, a bubbly asset may be interesting

for short selling.

When the process starts from the normal regime, or from the ergodic probability dis-

tributions, the expected returns show hardly any dynamics. The volatilities on the other

hand slope upwards for both. This feature relates again to the mean-aversion described

by Guidolin and Timmermann (2007). Because complete certainty on the process being

in either the bubble or normal state is not realistic, we include the expected returns and

volatilities when the process starts with equal probabilities in the bubble or normal regime.

The expected return are then exactly an average of the expectations for the normal and

bubble case. For the volatilities such a relation does not apply, and we see that the pattern

is closer to the bubble case.

We show the optimal buy-and-hold allocation for a power-utility investor with a risk

aversion coefficient of 5 in Figure 6. As we reasoned based on the expected returns and

volatilities, riding bubbles is attractive for short horizons. A one-month investor would

allocate between 22% (Carhart model) and 37% (CAPM) of his wealth to a bubbly industry,

and the remainder in the market portfolio. For a two-month buy-and-hold strategy, weights

range from 11% (Carhart model) to 28% (CAPM). This decline continues and the weights

become negative for horizons of four (Fama-French and Carhart models) to eight months

(CAPM). For horizons that exceed these lengths, expected returns are lower than the

market, which makes a short position in the bubbly industry and a leveraged position in

the market attractive. The largest short positions show up for horizons of 17 (Carhart
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model, -25%), 19 (Fama-French model, -19%) or 25 months (CAPM, -11%). For longer

horizons, weights go slightly up again, reflecting the increase in expected returns. As

predicted by theory, investors with a long horizon that follow a buy-and-hold strategy will

short bubbles. In line with empirical and theoretical literature for short horizons, riding

bubbles is the optimal strategy.

[Figure 6 about here.]

This conclusion also applies to an investor who is divided between the normal regime

and the bubble regime. The allocations for this investor are less aggressive than for the

investor who is sure about the asset begin in the bubble regime, but still show the same

pattern. If this investor has a short horizon, he will ride bubbles. For longer horizons, he

will short the asset.

3.3 Decisions with rebalancing

While the optimal buy-and-hold strategies form an interesting benchmark case, they are

not entirely realistic. Most investors monitor the performance of their investments, and

adjust their allocation when the investment climate changes. We expect these adjustments

to be particularly relevant when bubbles are concerned. Investor who speculate on the

continuation of a bubble, may want to exit as soon as signals of the bursting of a bubble

reach them.

We consider the optimal decision of an investor who can adjust his position every

month in Figure 7. After observing the return for a particular month, this investor updates

his inferences of the regime probabilities as in Equation (20), and adjusts his allocation

accordingly. His investment problem become dynamic, which we solve by the techniques

described in Appendix A.

[Figure 7 about here.]

If the investor has an investment horizon of one month, the buy-and-hold decision and

decision with rebalancing are of course identical, so the curves in Figure 7 start at the same

point as in Figure 6. While certainty about the bubble at time t leads to declining weights
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for a buy-and-hold strategy, an investors who can rebalance should increases his holdings

if his horizon becomes longer. For the CAPM this effect is strongest for an horizon of three

months with an optimal allocation for month t + 1 of 43% to the bubbly industry. For

the Fama-French and Carhart models the maximum allocations equal 34% in month 7 and

26% in month 5. When the horizon becomes longer, optimal weights decline first and then

stabilize after month 30.

To explain why the possibility of rebalancing makes riding bubbles more attractive, we

look at our results in Table 5 and Figure 4 for the Fama-French model. Riding bubbles is

attractive because the expected return in month t+1 is positive (0.57% for the Fama-French

model). However, it is also risky because a crash may occur. An investor with a two-month

horizon reconsiders his portfolio after month t + 1. He uses the return in month t + 1 to

update his time t forecast for this month, which was a continuation of the bubble with

probability 0.812 and a switch to the deflation crash regime with probability 0.188. If the

abnormal return during month t+1 is positive, he will adjust the forecast probability for the

bubble regime upward and the probability for the crash regime downward. His predictions

for month t+2 are based on these updated probabilities, so he will probably ride the bubble

again in month t+2. Now suppose that the abnormal return during month t+1 is below k.

He will then decrease the forecasted probability for the bubble regime, and increase it for

the deflation crash regime. In the limiting case that the deflation crash regime prevails with

probability 1, the abnormal return forecast becomes (0.224+0.585)×0.05+0.191×−10.15 =

−1.89% for month t + 2. Because the abnormal return forecast is negative, the investor

will probably take a short position, which would allow him to recoup some of his loss in

month t+1. This possibility to adjust the allocation entices the investor to take more risk

in the beginning. Persistence in return patterns is a necessary condition for this behavior,

which is what we find in the data based on the regime switching model.

The decline for longer horizons is related to the overall riskiness of the investment set.

Because no riskfree asset is available, the investor remains exposed to risk for his complete

investment horizon. This market risk may exacerbate losses that could come from a riding

bubbles strategy. To mitigate the effects of this long exposure to market risk, the investor

limits his initial risk taking.

The effect of learning is also present when the process starts from the steady-state
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distribution. In this case the investor also increases his exposure to the industry to profit

from the specific form of the abnormal return distribution. Because all regimes are possible

with some probability (see Table 6), the investor can take additional risk. When the

regime process starts in the normal regime, opportunities for learning are small, because

the process is likely to remain in the normal regime.

Learning is equally valuable to an investor who is divided 50/50 between the normal

and bubble regime as it is to an investor who knows about the bubble with certainty. The

optimal portfolios for the 50/50 case follow the same pattern as the case with certainty

on the bubble. The main difference is that the weighs for all horizons have been shifted

downward.

We analyze the effect of learning when investor can rebalance less often than every

month in Table 8. When an investor assigns a probability of 50% or more to the bubble

regime, the effect of learning remains important. An investor who know with certainty

about the bubble and an investment horizon of two months invests 15.2% of his wealth in

the industry. When his horizon is doubled to four months, he either reduces his weight

to 0.7% if he cannot rebalance, or increases it to 19.7% when he can rebalance. When

the investor can rebalance every three, four or six months, the effect of learning remains

present, though it becomes smaller. We conclude that learning is an important aspect

when determining the optimal response to bubbles.

[Table 8 about here.]

4 Conclusion

Riding bubbles is not only the optimal strategy for short-term speculator. Instead, our

findings show that even long-term investor would ride bubbles, as long as they can re-

balance their portfolios at reasonable frequencies. Only investors who need longer six

months to rebalance their portfolios would take a short position, if they learn of a bub-

ble. These findings are in contrast to theoretical papers such as De Long et al. (1990a)

and Shleifer and Vishny (1997) which propose that investors refrain from trading against

bubbles due to their short horizons. The difference between the theoretical predictions
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and our empirical findings might be due to the fact that bubbles burst in these theoretical

models, but empirically, we find that they deflate slowly.
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A Solution techniques

As Guidolin and Timmermann (2007) we use simulations to approximate the expectation

in Equation (17). A simulation consist of a sequence of h market returns and h industry

returns. For both we need h draws from the distribution of the excess market return, which

we construct by bootstrapping. The idiosyncratic part of the industry return requires a

simulated path from the regime process, Si,τ , τ = 1, 2, . . . , h and random draws from the

regimes that constitute the simulated path, ui,τ(Si,τ ).

To reduce the computational burden, we construct the paths by stratified sampling.

We construct a fixed number of paths B that start with a particular regime s. So, we

have B paths that start from the normal regime, B paths that start from the crash regime,

and so on. The next regime is simulated based on the transition probabilities that apply

to the first regime, and so on. A single simulated path is thus indicated by the initial

regime s and the path number b. The resulting compounded industry return is denoted by

Rs,b
i,h. Since the compounded market return is regime independent, we denote it by Rb

m,h.

Because only the length of the path h matters for the simulation, we omit the time period

t+ hk from the notation.

To increase the precision, we use antithetic sampling to draw from the regimes. Suppose

we have a drawn a particular us,b
i,τ from regime Ss,b

i,τ in path (s, b), with cumulative probability

Pr
[

u ≤ us,b
i,τ |S

s,b
i,τ

]

. Then we also add the draw us,B+b
i,τ from the same regime Ss,b

i,τ such that

Pr
[

u ≤ us,B+b
i,τ |Ss,b

i,τ

]

= 1− Pr
[

u ≤ us,b
i,τ |S

s,b
i,τ

]

.

The last simulated draw us,b
i,h is used to construct the inference probability for the next

decision as in Equations (19) and (20). Each combination of ξt+hk and us,b
i,h will generally

produce a new ξ
s,b

t+h(k+1), leading to the curse of dimensionality. As in Guidolin and Timmermann

(2007), we approximate ξs,b

t+h(k+1) over a grid of J points ξj, j = 1, 2, . . . , J , by selecting the

grid point that has the lowest L1 norm to ξ
s,b

t+h(k+1). Mathematically, we replace ξ
s,b

t+h(k+1)

by

ξ̃
(s,b)
t+h(k+1) =

{

ξj : min
j

∑

q∈S

∣

∣

∣
ξjq − ξs,b

q,t+h(k+1)

∣

∣

∣

}

. (25)
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These techniques lead to the following approximation of Equation (17)

Q (k, ξt+hk)

1− γ
≈max

wk

1

2B

∑

s∈S

2B
∑

b=1

U
(

wkR
s,b
i,h + (1− wk)R

b
m,h

)

·

Q
(

k + 1, ξ̃s,b

t+h(k+1)

)

Pr[St+hk+1 = s|ξt+hk].

(26)

We divide by 2B because antithetic sampling doubles the number of paths B. We multiply

by Pr[St+hk+1 = s|ξt+hk] to give each stratum its proper weight in the simulation.

The last element to discuss for our solution of the dynamic program is the grid for

the inference probability ξ. We construct this grid such that for a given set of simulated

paths, the distance between any point ξ
(s,b)
t+h(k+1) and the nearest point in the grid ξ̃

(s,b)
t+h(k+1)

is smaller than a specified threshold d multiplied by the number of regimes. We use a

simple algorithm to construct such a grid. We first specify a small set of grid points, which

comprises the ergodic regime probabilities, and the set {ξ : ξN = p, ξB = 1− p, ξs = 0∀s 6=

N,B, p = 0, 0.1, 0.2, . . . , 1}. For each point in this list ξj, and all simulated paths, we check

whether the distance between the resulting point ξs,b(ξj) and its nearest neighbor ξ̃s,b(ξj)

is smaller than the threshold. If so, the algorithm stops. If not, the point ξs,b(ξj) is added

to the grid, and the new grid is evaluated.
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Table 1: Structure of the Transition Matrix

N C G1 G2 · · · Gl Gl+1 · · · GL B DC DN

N pNN pCN 0 0 · · · 0 0 · · · 0 0 pDCN 0
C pNC pCC 0 0 · · · 0 0 · · · 0 0 0 0
G1 pNG pCG 0 0 · · · 0 0 · · · 0 0 0 0
G2 0 0 1 0 · · · 0 0 · · · 0 0 0 0
...

...
...

...
. . .

. . .
...

...
. . .

...
...

...
...

Gl 0 0 0 0
. . . 0 0 · · · 0 0 0 0

Gl+1 0 0 0 0 · · · 1 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

. . .
. . .

...
...

...
...

GL 0 0 0 0 · · · 0 0
. . . 0 0 0 0

B 0 0 0 0 · · · 0 0 · · · 1 pBB 0 0
DC 0 0 0 0 · · · 0 0 · · · 0 pBDC

pDCDC
pDNDC

DN 0 0 0 0 · · · 0 0 · · · 0 0 pDCDN
pDNDN

This table shows the structure of the matrix of transition probabilities for the different regimes: normal
(N), crash (C), good news (Gl, l = 1, 2, . . . , L), bubble (B), deflation crash (DC) and deflation normal
(DN). Each column should sum to one, and we also impose pNG = pCG.
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Table 2: Industry-specific Estimates for the CAPM and Abnormal Returns

Estimates of Equation (1) Abnormal Returns ri,t − rf,t − β̂′

ift

Industry βi ωi (×100) mean stdev. skew. kurt. min. max.

Agric 0.93 (0.045) 4.82 (0.15) 0.18 5.17 0.26 4.02 −14.4 25.0
Food 0.69 (0.028) 3.03 (0.10) 0.32 3.22 0.63 7.48 −11.7 19.9
Soda 0.82 (0.047) 4.94 (0.16) 0.39 5.38 0.54 7.06 −18.6 32.7
Beer 0.79 (0.039) 3.78 (0.12) 0.35 4.05 −0.09 4.73 −17.1 14.9
Smoke 0.71 (0.047) 4.97 (0.15) 0.67 5.44 −0.05 6.83 −29.5 27.9
Toys 1.21 (0.044) 4.58 (0.14) −0.15 5.07 −0.22 4.27 −24.9 17.1
Fun 1.39 (0.044) 4.64 (0.15) 0.28 4.86 0.24 4.75 −19.0 25.3
Books 1.09 (0.032) 3.22 (0.12) 0.01 3.44 0.11 5.65 −16.8 18.5
Hshld 0.85 (0.032) 2.72 (0.10) 0.10 3.05 −0.41 7.22 −19.4 12.3
Clths 1.16 (0.038) 3.94 (0.13) 0.12 4.22 0.29 5.27 −15.2 19.1
Health 1.12 (0.061) 5.83 (0.20) 0.06 6.73 −0.14 6.37 −29.6 31.2
MedEq 0.90 (0.030) 3.34 (0.11) 0.26 3.52 −0.06 3.32 −12.7 12.3
Drugs 0.83 (0.032) 3.15 (0.11) 0.26 3.57 −0.09 5.19 −14.1 18.0
Chems 1.06 (0.026) 2.78 (0.09) 0.03 3.06 0.23 5.66 −11.8 16.8
Rubbr 1.10 (0.036) 3.56 (0.12) 0.14 3.81 0.41 5.10 −12.7 19.9
Txtls 1.10 (0.046) 4.92 (0.16) 0.03 5.22 1.41 16.00 −18.8 47.1
BldMt 1.20 (0.030) 3.05 (0.09) 0.02 3.35 0.48 8.53 −14.5 23.2
Cnstr 1.33 (0.039) 4.22 (0.13) −0.03 4.46 0.44 4.00 −16.3 18.2
Steel 1.30 (0.043) 4.29 (0.14) −0.24 4.55 0.50 5.12 −18.1 24.4
FabPr 0.92 (0.048) 5.05 (0.15) 0.25 5.62 −0.10 7.29 −35.8 24.3
Mach 1.24 (0.027) 2.76 (0.09) 0.01 3.00 −0.05 4.01 −13.0 10.6
ElcEq 1.22 (0.029) 3.16 (0.10) 0.21 3.23 0.03 3.32 −12.1 10.4
Autos 1.17 (0.044) 4.40 (0.15) −0.16 4.62 0.63 11.31 −21.6 36.6
Aero 1.15 (0.042) 4.28 (0.15) 0.23 4.55 0.24 5.11 −18.7 17.9
Guns 0.63 (0.091) 9.74 (0.29) 0.40 9.91 0.94 8.06 −27.7 74.2
Gold 0.82 (0.047) 4.94 (0.16) 0.39 5.38 0.54 7.06 −18.6 32.7
Ships 1.10 (0.046) 5.02 (0.19) 0.08 5.40 0.33 4.45 −21.0 20.0
Mines 1.09 (0.049) 4.95 (0.17) 0.22 5.26 −0.11 3.74 −21.6 16.7
Coal 1.21 (0.075) 7.79 (0.25) 0.46 8.44 0.80 6.30 −29.1 45.6
Oil 0.79 (0.036) 3.80 (0.12) 0.30 4.05 0.31 4.09 −14.4 17.4
Util 0.55 (0.028) 3.06 (0.10) 0.16 3.26 0.11 4.10 −13.2 11.8
Telcm 0.75 (0.031) 2.97 (0.09) 0.06 3.19 0.21 4.65 −11.8 16.5
PerSv 1.16 (0.039) 4.15 (0.14) −0.23 4.95 −0.10 3.93 −17.7 16.5
BusSv 1.29 (0.031) 2.96 (0.09) 0.11 3.13 0.45 4.41 −9.1 13.4
Comps 1.16 (0.040) 4.22 (0.13) 0.04 4.58 0.10 5.59 −21.2 21.3
Chips 1.36 (0.037) 3.64 (0.12) −0.05 4.09 0.04 6.33 −18.1 22.6
LabEq 1.32 (0.037) 3.89 (0.13) 0.02 4.07 0.17 4.12 −13.6 18.4
Paper 0.98 (0.032) 3.41 (0.11) 0.08 3.51 0.64 5.92 −14.7 18.2
Boxes 0.99 (0.031) 3.21 (0.10) 0.10 3.74 −0.21 4.98 −16.4 17.6
Trans 1.09 (0.031) 3.34 (0.10) 0.01 3.47 0.32 4.04 −11.1 12.7
Whshl 1.08 (0.027) 2.79 (0.09) 0.12 3.09 0.13 5.37 −13.2 13.3
Rtail 1.00 (0.030) 3.09 (0.10) 0.15 3.26 −0.05 3.86 −12.9 12.9
Meals 1.03 (0.035) 3.62 (0.11) 0.32 4.13 −0.13 4.88 −18.8 15.7
Banks 1.04 (0.033) 3.51 (0.11) −0.03 3.81 −0.15 5.71 −19.9 13.9
Insur 0.97 (0.034) 3.63 (0.11) 0.10 3.86 0.56 6.69 −16.2 21.4
RlEst 1.19 (0.054) 5.39 (0.18) −0.33 5.50 1.14 13.10 −18.6 46.2
Fin 1.22 (0.025) 2.54 (0.09) 0.10 2.80 0.12 6.73 −16.4 14.6
Other 1.14 (0.039) 4.02 (0.12) −0.34 4.65 −0.26 5.49 −20.2 16.4

The first four columns of this table report the estimates of the industry-specific part of the model in
Equation (1), with the CAPM as asset pricing model. Based on these estimates, we construct abnormal

returns ri,t − rf,t − β̂′
ift. We report their means, standard deviation (both in % per month), skewness,

kurtosis, minimum and maximum (last two in % per month) in the next six columns. The estimates are
based on the returns on the 48 industries of Fama and French (1997). We assume that the innovations
ui,t, and the regime processes Si,t for the different industries are independent. We estimate the parameters
by the EM-algorithm of Dempster et al. (1977). We put the period of good news equal to L = 6 months,
and the upper bound for crashes at k = −1. Standard errors of the estimates are in parentheses.
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Table 3: Industry-specific Estimates for the Fama-French Model and Abnormal Re-

turns

Estimates of Equation (1) Abnormal Returns ri,t − rf,t − β̂′

ift

Industry market βi SMB βi HML βi ωi (×100) mean stdev. skew. kurt. min. max.

Agric 0.84 (0.048) 0.44 (0.066) 0.11 (0.072) 4.62 (0.14) 0.07 5.05 0.37 4.78 −15.1 27.3
Food 0.75 (0.032) −0.11 (0.041) 0.17 (0.049) 2.95 (0.10) 0.26 3.14 0.62 6.85 −11.1 19.0
Soda 0.89 (0.052) −0.10 (0.074) 0.20 (0.080) 4.90 (0.16) 0.31 5.31 0.52 6.84 −18.3 32.4
Beer 0.84 (0.042) −0.10 (0.055) 0.09 (0.065) 3.76 (0.12) 0.32 4.02 −0.09 4.42 −17.4 14.3
Smoke 0.80 (0.049) −0.24 (0.070) 0.17 (0.075) 4.92 (0.15) 0.63 5.36 −0.13 7.20 −31.0 28.5
Toys 1.11 (0.045) 0.51 (0.069) 0.08 (0.070) 4.37 (0.13) −0.27 4.82 −0.23 4.09 −23.7 15.5
Fun 1.34 (0.046) 0.42 (0.065) 0.24 (0.072) 4.47 (0.15) 0.10 4.66 0.17 4.26 −18.9 22.3
Books 1.07 (0.035) 0.21 (0.046) 0.20 (0.052) 3.14 (0.11) −0.11 3.34 0.05 4.74 −13.7 16.5
Hshld 0.89 (0.028) −0.20 (0.042) −0.04 (0.043) 2.69 (0.09) 0.15 3.02 −0.53 9.29 −22.6 11.2
Clths 1.08 (0.037) 0.54 (0.056) 0.36 (0.063) 3.61 (0.13) −0.12 3.92 0.20 8.36 −21.4 25.0
Health 1.05 (0.061) 0.67 (0.090) 0.08 (0.093) 5.63 (0.20) −0.06 6.51 −0.35 7.36 −35.3 26.2
MedEq 0.84 (0.034) 0.05 (0.048) −0.28 (0.058) 3.30 (0.12) 0.38 3.43 −0.08 3.74 −13.0 12.0
Drugs 0.83 (0.035) −0.32 (0.045) −0.37 (0.057) 3.17 (0.10) 0.49 3.32 0.08 5.01 −14.7 13.3
Chems 1.13 (0.027) −0.07 (0.037) 0.31 (0.041) 2.64 (0.08) −0.10 2.88 0.25 5.12 −10.2 16.0
Rubbr 1.03 (0.031) 0.63 (0.045) 0.33 (0.048) 3.06 (0.09) −0.12 3.27 0.35 4.65 −10.2 15.6
Txtls 1.11 (0.042) 0.69 (0.065) 0.67 (0.070) 4.18 (0.13) −0.41 4.50 1.34 15.23 −17.6 39.6
BldMt 1.22 (0.029) 0.28 (0.042) 0.44 (0.045) 2.77 (0.09) −0.23 3.03 0.26 7.40 −13.7 18.9
Cnstr 1.27 (0.044) 0.51 (0.067) 0.30 (0.073) 3.96 (0.14) −0.25 4.21 0.28 3.83 −16.5 15.7
Steel 1.27 (0.039) 0.38 (0.057) 0.40 (0.060) 3.99 (0.12) −0.49 4.34 0.35 5.45 −20.1 22.3
FabPr 0.94 (0.050) 0.20 (0.071) 0.43 (0.076) 4.90 (0.15) 0.02 5.40 −0.08 6.54 −33.2 22.0
Mach 1.20 (0.029) 0.26 (0.038) 0.09 (0.045) 2.67 (0.08) −0.08 2.91 −0.03 3.92 −10.7 10.0
ElcEq 1.21 (0.032) 0.06 (0.045) 0.03 (0.048) 3.15 (0.10) 0.19 3.23 0.05 3.38 −11.9 11.3
Autos 1.24 (0.046) 0.10 (0.062) 0.64 (0.067) 4.17 (0.14) −0.45 4.25 0.73 9.04 −16.1 31.7
Aero 1.15 (0.044) 0.18 (0.073) 0.31 (0.069) 4.20 (0.14) 0.06 4.44 0.18 4.70 −17.9 17.6
Guns 0.57 (0.097) 0.40 (0.137) 0.12 (0.148) 9.68 (0.29) 0.28 9.85 1.04 8.67 −29.0 75.2
Gold 0.89 (0.052) −0.10 (0.074) 0.20 (0.080) 4.90 (0.16) 0.31 5.31 0.52 6.84 −18.3 32.4
Ships 1.16 (0.050) 0.10 (0.075) 0.46 (0.086) 4.99 (0.19) −0.14 5.22 0.33 4.20 −20.4 18.6
Mines 1.10 (0.049) 0.31 (0.066) 0.44 (0.075) 4.59 (0.17) −0.04 5.11 −0.11 3.84 −19.9 16.9
Coal 1.19 (0.079) 0.31 (0.116) 0.30 (0.120) 7.74 (0.24) 0.27 8.38 0.78 6.08 −28.8 44.2
Oil 0.89 (0.039) −0.24 (0.053) 0.30 (0.058) 3.67 (0.11) 0.21 3.89 0.25 4.11 −14.5 16.7
Util 0.66 (0.030) −0.20 (0.041) 0.42 (0.047) 2.81 (0.09) 0.00 2.94 0.11 3.68 −10.0 9.1
Telcm 0.80 (0.030) −0.19 (0.041) 0.14 (0.045) 2.92 (0.09) 0.03 3.12 0.29 5.16 −10.4 16.4
PerSv 1.06 (0.039) 0.50 (0.060) 0.04 (0.061) 3.92 (0.12) −0.33 4.74 −0.31 4.72 −22.1 14.3
BusSv 1.12 (0.025) 0.45 (0.036) −0.43 (0.038) 2.41 (0.07) 0.23 2.57 0.23 5.46 −11.4 11.4
Comps 1.04 (0.039) 0.23 (0.056) −0.54 (0.057) 3.85 (0.11) 0.24 4.14 0.01 4.37 −15.2 16.2
Chips 1.22 (0.033) 0.44 (0.046) −0.39 (0.050) 3.14 (0.10) 0.05 3.64 −0.21 5.23 −16.6 13.5
LabEq 1.14 (0.037) 0.49 (0.050) −0.40 (0.059) 3.46 (0.11) 0.13 3.56 0.13 3.82 −11.2 14.0
Paper 1.05 (0.033) −0.03 (0.047) 0.40 (0.049) 3.31 (0.10) −0.10 3.32 0.57 5.21 −10.0 17.0
Boxes 1.02 (0.035) −0.09 (0.050) 0.01 (0.051) 3.21 (0.10) 0.11 3.72 −0.17 4.75 −15.4 17.6
Trans 1.10 (0.033) 0.22 (0.050) 0.33 (0.051) 3.21 (0.10) −0.17 3.30 0.29 3.85 −11.2 10.8
Whshl 1.00 (0.025) 0.55 (0.039) 0.03 (0.038) 2.38 (0.08) 0.01 2.79 −0.47 7.82 −14.6 10.8
Rtail 0.98 (0.032) 0.14 (0.048) 0.04 (0.048) 3.09 (0.10) 0.12 3.25 −0.06 3.79 −12.5 11.5
Meals 1.00 (0.039) 0.32 (0.057) 0.15 (0.061) 3.55 (0.11) 0.19 4.05 −0.26 5.38 −20.4 14.9
Banks 1.17 (0.033) −0.18 (0.047) 0.54 (0.050) 3.26 (0.10) −0.25 3.36 0.24 4.71 −13.6 13.0
Insur 1.07 (0.035) −0.16 (0.050) 0.38 (0.053) 3.47 (0.10) −0.04 3.62 0.74 6.40 −10.6 21.3
RlEst 1.14 (0.046) 0.90 (0.070) 0.73 (0.077) 4.44 (0.18) −0.83 4.42 1.16 13.22 −15.3 37.9
Fin 1.23 (0.026) 0.13 (0.036) 0.16 (0.040) 2.50 (0.08) 0.00 2.75 0.18 6.65 −15.8 13.5
Other 1.10 (0.042) 0.21 (0.068) 0.00 (0.066) 3.94 (0.13) −0.37 4.58 −0.21 5.52 −20.8 17.1

The first eight columns of this table report the estimates of the industry-specific part of the model in
Equation (1), with the model of Fama and French (1993) as asset pricing model. Based on these estimates,

we construct abnormal returns ri,t− rf,t− β̂′
ift. We report their means, standard deviation (both in % per

month), skewness, kurtosis, minimum and maximum (last two in % per month) in the next six columns.
The estimates are based on the returns on the 48 industries of Fama and French (1997). We assume that
the innovations ui,t, and the regime processes Si,t for the different industries are independent. We estimate
the parameters by the EM-algorithm of Dempster et al. (1977). We put the period of good news equal
to L = 6 months, and the upper bound for crashes at k = −1. Standard errors of the estimates are in
parentheses.
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Table 4: Industry-specific Estimates for the Carhart Model and Abnormal Returns

Estimates of Equation (1) Abnormal Returns ri,t − rf,t − β̂′

ift

Industry market βi SMB βi HML βi MOM βi ωi (×100) mean stdev. skew. kurt. min. max.

Agric 0.86 (0.05) 0.46 (0.08) 0.08 (0.08) 0.14 (0.05) 4.59 (0.14) −0.03 5.03 0.34 4.99 −17.4 27.4
Food 0.75 (0.03) −0.11 (0.04) 0.16 (0.05) 0.01 (0.03) 2.95 (0.10) 0.25 3.14 0.63 6.89 −11.1 19.1
Soda 0.89 (0.06) −0.15 (0.07) 0.19 (0.08) −0.10 (0.05) 4.88 (0.17) 0.40 5.29 0.49 6.59 −18.7 31.7
Beer 0.84 (0.04) −0.09 (0.05) 0.12 (0.06) 0.13 (0.04) 3.74 (0.12) 0.21 4.02 −0.10 4.89 −18.1 15.6
Smoke 0.80 (0.05) −0.24 (0.07) 0.18 (0.08) 0.03 (0.05) 4.91 (0.15) 0.61 5.36 −0.13 7.30 −31.2 28.8
Toys 1.10 (0.05) 0.51 (0.07) 0.06 (0.07) −0.12 (0.05) 4.36 (0.13) −0.17 4.79 −0.18 4.01 −22.7 17.1
Fun 1.32 (0.04) 0.42 (0.06) 0.21 (0.07) −0.21 (0.04) 4.32 (0.15) 0.28 4.58 0.05 3.67 −18.8 15.4
Books 1.07 (0.03) 0.21 (0.05) 0.18 (0.05) −0.06 (0.03) 3.11 (0.12) −0.05 3.33 0.01 4.46 −13.9 14.4
Hshld 0.89 (0.03) −0.20 (0.05) −0.05 (0.05) 0.02 (0.04) 2.68 (0.09) 0.14 3.02 −0.51 9.21 −22.4 11.3
Clths 1.05 (0.04) 0.53 (0.06) 0.32 (0.06) −0.19 (0.04) 3.57 (0.12) 0.04 3.81 0.28 7.25 −18.2 24.1
Health 1.04 (0.06) 0.67 (0.09) 0.07 (0.09) −0.03 (0.06) 5.61 (0.20) −0.03 6.52 −0.36 7.28 −34.8 25.9
MedEq 0.84 (0.03) 0.04 (0.05) −0.27 (0.06) 0.06 (0.04) 3.27 (0.12) 0.33 3.43 −0.10 3.81 −13.3 11.8
Drugs 0.84 (0.03) −0.31 (0.04) −0.37 (0.05) 0.07 (0.03) 3.14 (0.10) 0.44 3.31 0.10 5.09 −15.7 13.3
Chems 1.12 (0.03) −0.07 (0.04) 0.29 (0.04) −0.09 (0.03) 2.60 (0.08) −0.03 2.87 0.19 5.09 −9.5 15.3
Rubbr 1.02 (0.03) 0.63 (0.04) 0.31 (0.05) −0.08 (0.03) 3.04 (0.09) −0.05 3.26 0.27 4.34 −11.0 13.1
Txtls 1.09 (0.04) 0.62 (0.06) 0.67 (0.06) −0.33 (0.04) 4.10 (0.12) −0.14 4.31 0.60 7.94 −17.3 28.7
BldMt 1.21 (0.03) 0.28 (0.04) 0.42 (0.04) −0.09 (0.03) 2.74 (0.09) −0.16 3.01 0.08 6.46 −13.3 16.0
Cnstr 1.27 (0.04) 0.51 (0.07) 0.31 (0.07) 0.04 (0.04) 3.95 (0.14) −0.28 4.21 0.26 3.85 −16.6 15.6
Steel 1.26 (0.04) 0.38 (0.06) 0.36 (0.06) −0.12 (0.04) 3.96 (0.12) −0.38 4.33 0.36 5.36 −20.0 21.3
FabPr 0.95 (0.05) 0.19 (0.07) 0.43 (0.08) 0.03 (0.05) 4.89 (0.15) 0.00 5.40 −0.09 6.58 −33.4 22.2
Mach 1.19 (0.03) 0.26 (0.04) 0.10 (0.04) −0.12 (0.03) 2.63 (0.08) 0.01 2.87 −0.06 3.73 −10.2 8.9
ElcEq 1.22 (0.03) 0.06 (0.05) 0.03 (0.05) 0.02 (0.03) 3.15 (0.10) 0.17 3.23 0.05 3.41 −12.1 11.3
Autos 1.21 (0.05) 0.09 (0.06) 0.53 (0.07) −0.36 (0.04) 3.77 (0.13) −0.14 4.06 0.02 5.16 −16.9 20.3
Aero 1.14 (0.04) 0.16 (0.06) 0.27 (0.06) −0.11 (0.04) 4.15 (0.13) 0.16 4.43 0.26 4.73 −16.8 18.1
Guns 0.60 (0.10) 0.40 (0.14) 0.17 (0.15) 0.21 (0.10) 9.63 (0.29) 0.10 9.81 1.07 8.82 −29.9 75.3
Gold 0.89 (0.06) −0.15 (0.07) 0.19 (0.08) −0.10 (0.05) 4.88 (0.17) 0.40 5.29 0.49 6.59 −18.7 31.7
Ships 1.16 (0.05) 0.10 (0.08) 0.45 (0.09) −0.02 (0.05) 4.97 (0.19) −0.13 5.22 0.33 4.20 −20.3 18.8
Mines 1.09 (0.05) 0.31 (0.07) 0.44 (0.08) 0.02 (0.05) 4.56 (0.16) −0.05 5.11 −0.11 3.85 −19.9 16.8
Coal 1.21 (0.08) 0.31 (0.12) 0.33 (0.12) 0.17 (0.08) 7.69 (0.24) 0.13 8.34 0.77 6.04 −29.6 43.9
Oil 0.91 (0.04) −0.25 (0.05) 0.33 (0.06) 0.12 (0.04) 3.61 (0.12) 0.10 3.85 0.26 3.97 −13.9 15.6
Util 0.66 (0.03) −0.20 (0.04) 0.41 (0.05) 0.02 (0.03) 2.82 (0.09) −0.01 2.94 0.13 3.66 −10.0 9.1
Telcm 0.79 (0.03) −0.19 (0.04) 0.09 (0.04) −0.09 (0.03) 2.89 (0.09) 0.13 3.10 0.20 4.74 −10.8 15.7
PerSv 1.06 (0.04) 0.50 (0.06) 0.04 (0.06) 0.03 (0.04) 3.93 (0.12) −0.35 4.73 −0.32 4.74 −22.6 14.1
BusSv 1.12 (0.02) 0.45 (0.04) −0.44 (0.04) −0.02 (0.02) 2.40 (0.07) 0.25 2.56 0.24 5.37 −11.0 11.6
Comps 1.02 (0.04) 0.24 (0.05) −0.58 (0.06) −0.13 (0.04) 3.82 (0.11) 0.35 4.09 0.03 4.12 −15.3 14.8
Chips 1.20 (0.03) 0.44 (0.04) −0.44 (0.05) −0.12 (0.03) 3.11 (0.10) 0.17 3.58 −0.15 4.92 −15.9 11.5
LabEq 1.14 (0.04) 0.49 (0.05) −0.43 (0.06) −0.03 (0.04) 3.46 (0.11) 0.16 3.56 0.13 3.83 −11.2 14.4
Paper 1.04 (0.03) −0.02 (0.05) 0.38 (0.05) −0.08 (0.03) 3.29 (0.10) −0.03 3.30 0.56 5.07 −10.4 16.4
Boxes 1.02 (0.04) −0.10 (0.05) 0.01 (0.05) −0.02 (0.04) 3.21 (0.10) 0.12 3.72 −0.16 4.76 −15.4 17.8
Trans 1.09 (0.03) 0.22 (0.05) 0.32 (0.05) −0.04 (0.03) 3.21 (0.10) −0.13 3.29 0.31 3.77 −11.3 11.0
Whshl 1.00 (0.03) 0.54 (0.04) 0.04 (0.04) 0.01 (0.03) 2.38 (0.08) 0.00 2.79 −0.45 7.82 −14.8 10.9
Rtail 0.98 (0.03) 0.12 (0.04) 0.02 (0.05) −0.12 (0.03) 3.01 (0.09) 0.21 3.21 −0.09 3.63 −11.8 10.2
Meals 1.00 (0.04) 0.32 (0.06) 0.15 (0.06) −0.03 (0.04) 3.54 (0.11) 0.22 4.04 −0.24 5.13 −19.7 14.5
Banks 1.15 (0.03) −0.18 (0.05) 0.49 (0.05) −0.18 (0.03) 3.20 (0.10) −0.09 3.29 0.18 4.47 −14.8 12.7
Insur 1.06 (0.03) −0.15 (0.05) 0.35 (0.05) −0.10 (0.03) 3.43 (0.10) 0.04 3.62 0.71 6.35 −13.2 21.3
RlEst 1.10 (0.05) 0.90 (0.06) 0.68 (0.07) −0.21 (0.04) 4.36 (0.16) −0.64 4.37 0.71 8.09 −16.0 31.3
Fin 1.23 (0.03) 0.13 (0.04) 0.15 (0.04) −0.05 (0.03) 2.49 (0.09) 0.04 2.74 0.20 6.84 −15.8 13.9
Other 1.09 (0.04) 0.20 (0.06) −0.02 (0.06) −0.06 (0.04) 3.93 (0.13) −0.32 4.57 −0.22 5.44 −20.7 17.2

The first ten columns of this table report the estimates of the industry-specific part of the model in
Equation (1), with the model of Carhart (1997) as asset pricing model. Based on these estimates, we

construct abnormal returns ri,t − rf,t − β̂′
ift. We report their means, standard deviation (both in % per

month), skewness, kurtosis, minimum and maximum (last two in % per month) in the next six columns.
The estimates are based on the returns on the 48 industries of Fama and French (1997). We assume that
the innovations ui,t, and the regime processes Si,t for the different industries are independent. We estimate
the parameters by the EM-algorithm of Dempster et al. (1977). We put the period of good news equal
to L = 6 months, and the upper bound for crashes at k = −1. Standard errors of the estimates are in
parentheses.
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Table 5: Estimation results for the regime-switching models

a: Estimates for the distribution parameters

CAPM Fama-French Model Carhart Model

µN 0.036 (0.007) 0.013 (0.007) 0.024 (0.007)
µB 0.841 (0.042) 0.789 (0.048) 0.826 (0.047)
µC 0.278 (0.050) 0.286 (0.046) 0.281 (0.048)
σC 0.640 (0.036) 0.638 (0.032) 0.642 (0.034)

b: Means and volatilities for the different regimes (in % per month)

CAPM Fama-French Model Carhart Model

average ωi 4.06 − 3.86 − 3.82 −
mean in N and DN 0.15 (0.028) 0.05 (0.027) 0.09 (0.027)
mean in G and B 3.41 (0.17) 3.05 (0.19) 3.16 (0.18)
mean in C and DC −10.64 (0.26) −10.15 (0.24) −10.04 (0.25)
volatility in C and DC 4.68 (0.33) 4.46 (0.30) 4.44 (0.31)

c: Estimates for the transition probabilities

CAPM Fama-French Model Carhart Model

pN,N 0.994 (0.0007) 0.995 (0.0006) 0.994 (0.0006)
pN,C 0.0014 (0.0005) 0.0005 (0.0003) 0.0005 (0.0003)
pN,G1

0.0050 − 0.0049 − 0.0053 −
pC,N 0.465 (0.1008) 0.354 (0.1388) 0.330 (0.1463)
pC,C 0.530 − 0.641 − 0.665 −
pC,G1

0.0050 − 0.0049 − 0.0053 −
pB,B 0.833 (0.0230) 0.812 (0.0313) 0.797 (0.0332)
pB,DC

0.167 − 0.188 − 0.203 −
pDC,N 0.251 (0.0244) 0.224 (0.0226) 0.238 (0.0231)
pDC,DC

0.175 (0.0248) 0.191 (0.0248) 0.176 (0.0232)
pDC,DN

0.574 − 0.585 − 0.585 −
pDN,DC

0.289 (0.0235) 0.279 (0.0217) 0.268 (0.0211)
pDN,DN

0.711 − 0.721 − 0.732 −

This table reports the estimates of the regime switching part of the model in Equation (1). The estimates
of the distributions of the different regimes in panel A correspond with Equation (2). Panel B shows the
implications for the idiosyncratic part of the return for the average industry conditional on each regime.
Panel C shows the estimates for the transition parameters in Table 1. The estimates are based on the
returns on the 48 industries of Fama and French (1997). We assume that the innovations ui,t, and the
regime processes Si,t for the different industries are independent. We estimate the parameters by the EM-
algorithm of Dempster et al. (1977). We consider the CAPM, the 3-Factor Model of Fama and French
(1993) and the 4-Factor Model of Carhart (1997) as asset pricing models. We put the period of good news
equal to L = 6 months, and the upper bound for crashes at k = −1.
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Table 6: Ergodic Probabilities of Different Regimes

Regime CAPM Fama-French Model Carhart Model

N 0.891 0.890 0.885
C 0.0026 0.0013 0.0012
G1 0.0045 0.0043 0.0047
G2 0.0045 0.0043 0.0047
G3 0.0045 0.0043 0.0047
G4 0.0045 0.0043 0.0047
G5 0.0045 0.0043 0.0047
G6 0.0045 0.0043 0.0047
B 0.0267 0.0231 0.0231
DC 0.0178 0.0194 0.0197
DN 0.0354 0.0405 0.0430

This table presents the ergodic probabilities of the different regimes: normal (N), crash (C), good news
(Gl, l = 1, 2, . . . , L), bubble (B), deflation crash (DC) and deflation normal (DN). The probabilities shown
in column 1 correspond with the abnormal returns based on the CAPM, column 2 and column 3 correspond
with the Fama and French (1993)-Model and Carhart (1997)-Model. We put the period of good news equal
to L = 6 months, and the upper bound for crashes at k = −1.
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Table 7: Identification of regimes per industry

CAPM Fama-French Model Carhart Model
industry N C G B DC DN N C G B DC DN N C G B DC DN

Agric 86.7 0.1 2.7 3.5 2.5 4.4 85.9 0.0 2.7 2.9 2.7 5.8 85.6 0.0 2.6 2.8 2.7 6.2
Food 91.6 0.8 2.9 3.2 0.7 0.8 89.9 0.8 3.2 3.2 1.1 1.8 90.3 0.8 3.1 2.9 1.1 1.8
Soda 88.7 0.5 2.5 2.2 2.1 4.0 88.4 0.4 2.4 1.9 2.2 4.7 87.8 0.3 2.9 2.0 2.2 4.9
Beer 91.0 0.2 1.9 1.0 1.7 4.2 90.2 0.1 2.3 1.2 1.9 4.2 91.7 0.2 1.5 0.7 1.7 4.2
Smoke 88.8 0.0 2.4 3.4 1.8 3.5 88.8 0.0 2.5 3.1 1.8 3.8 88.7 0.0 2.5 2.7 1.9 4.2
Toys 88.0 0.1 3.1 2.1 2.4 4.3 88.5 0.0 2.8 2.0 2.6 4.2 88.4 0.0 3.1 1.9 2.5 4.2
Fun 93.1 0.3 2.3 2.2 0.7 1.3 93.4 0.2 2.3 1.8 0.8 1.5 90.4 0.1 3.1 2.3 1.3 3.0
Books 89.0 0.2 3.7 4.5 1.0 1.6 88.1 0.1 3.8 3.5 1.4 3.1 87.3 0.0 4.3 3.5 1.4 3.5
Hshld 88.4 0.4 2.9 2.7 1.7 3.8 87.6 0.1 3.4 3.6 1.8 3.5 87.7 0.1 3.4 3.5 1.8 3.5
Clths 92.0 1.0 2.3 2.1 0.9 1.7 92.3 0.2 2.1 1.1 1.6 2.7 92.5 0.1 2.3 1.2 1.4 2.5
Health 85.2 0.6 3.5 3.3 2.4 5.1 84.7 0.2 2.9 2.1 2.5 7.6 84.1 0.2 2.9 2.0 2.6 8.1
MedEq 90.8 0.1 2.6 3.6 1.0 2.0 93.1 0.1 2.6 2.4 0.8 1.0 92.4 0.1 2.9 2.4 1.0 1.2
Drugs 78.4 0.1 4.9 4.4 3.2 9.0 92.5 0.0 2.6 1.8 0.9 2.1 92.3 0.0 2.6 1.6 1.1 2.4
Chems 85.9 0.0 3.1 2.5 3.1 5.4 83.9 0.0 3.5 2.7 3.3 6.5 82.5 0.0 3.8 3.0 3.5 7.2
Rubbr 88.4 0.2 3.3 3.8 1.5 2.9 88.7 0.0 2.3 1.5 2.5 4.9 88.5 0.1 2.7 1.7 2.4 4.6
Txtls 91.4 0.1 2.3 2.6 1.4 2.1 89.4 0.0 2.1 0.9 2.6 5.0 93.8 0.0 1.5 1.0 1.4 2.3
BldMt 89.7 0.0 3.1 1.2 2.5 3.5 90.4 0.0 2.2 0.8 2.2 4.3 89.1 0.0 2.5 0.9 2.2 5.2
Cnstr 91.3 0.1 2.8 3.7 1.0 1.1 89.4 0.0 3.1 2.5 1.7 3.4 89.3 0.0 3.1 2.1 1.8 3.7
Steel 90.8 0.4 2.5 2.8 1.2 2.3 86.3 0.2 3.5 4.3 2.1 3.6 85.2 0.1 3.8 4.7 2.2 3.9
FabPr 89.3 0.2 2.6 4.0 1.7 2.2 88.7 0.0 2.8 3.4 2.0 3.0 88.7 0.0 2.9 3.0 2.1 3.2
Mach 88.5 0.1 3.5 2.0 2.2 3.8 86.5 0.0 3.7 2.4 2.6 4.7 84.7 0.0 4.7 3.0 2.5 5.1
ElcEq 96.3 0.1 1.3 0.6 0.6 1.1 95.3 0.0 1.6 0.8 0.8 1.6 95.0 0.0 1.7 0.7 0.8 1.7
Autos 95.6 0.4 1.8 0.9 0.5 0.7 96.3 0.2 1.6 0.5 0.5 0.9 89.1 0.1 3.7 1.5 1.7 4.0
Aero 90.9 0.1 3.5 2.1 1.3 2.2 91.3 0.0 3.1 1.7 1.2 2.6 89.8 0.0 3.9 2.0 1.5 2.8
Guns 97.0 0.0 1.5 0.6 0.3 0.5 97.0 0.0 1.5 0.6 0.3 0.5 97.1 0.0 1.5 0.5 0.3 0.6
Gold 88.7 0.5 2.5 2.2 2.1 4.0 88.4 0.4 2.4 1.9 2.2 4.7 87.8 0.3 2.9 2.0 2.2 4.9
Ships 88.8 0.6 2.8 3.2 1.5 3.1 91.2 0.0 2.6 1.8 1.2 3.2 90.1 0.0 2.8 1.8 1.4 3.8
Mines 89.7 0.1 2.9 3.0 1.3 3.0 81.0 0.1 4.3 4.1 2.9 7.6 80.2 0.1 4.4 3.8 3.1 8.3
Coal 88.5 0.1 4.1 4.1 1.5 1.7 89.1 0.0 3.9 3.6 1.6 1.7 89.5 0.0 3.9 3.0 1.6 1.9
Oil 87.4 0.1 3.6 3.9 1.8 3.3 89.3 0.1 3.0 3.7 1.5 2.4 88.9 0.1 3.0 3.2 1.7 2.9
Util 89.6 0.0 2.4 1.5 1.9 4.6 92.0 0.0 2.1 1.4 1.3 3.2 92.4 0.0 2.0 1.2 1.3 3.1
Telcm 88.2 0.1 1.6 2.8 2.2 5.1 89.1 0.0 1.5 2.1 2.3 5.0 88.4 0.0 1.8 2.4 2.3 5.1
PerSv 69.5 0.1 4.6 6.5 6.1 13.2 73.4 1.2 3.7 4.6 4.9 12.2 73.6 1.2 3.7 4.1 4.9 12.5
BusSv 91.5 0.0 1.5 1.1 1.8 4.1 90.6 0.0 1.2 1.4 1.5 5.3 90.7 0.0 1.2 1.4 1.4 5.3
Comps 92.1 0.1 1.7 2.1 1.7 2.4 90.1 0.0 2.5 2.9 1.8 2.7 90.0 0.0 2.8 2.7 1.8 2.7
Chips 86.3 0.2 2.5 3.3 2.6 5.1 80.9 0.0 4.4 5.8 3.3 5.5 79.9 0.0 4.8 6.1 3.3 5.9
LabEq 93.0 0.2 2.2 1.6 1.0 1.9 94.5 0.1 1.8 1.7 0.8 1.2 94.5 0.1 1.9 1.7 0.7 1.1
Paper 97.1 0.1 1.0 0.5 0.4 0.8 99.4 0.0 0.3 0.2 0.1 0.1 99.1 0.0 0.4 0.2 0.1 0.1
Boxes 76.0 0.1 3.7 4.4 4.4 11.4 75.6 0.1 3.7 4.3 4.4 11.9 75.4 0.1 3.6 4.1 4.4 12.3
Trans 95.5 0.7 1.6 1.2 0.4 0.5 96.3 0.4 1.2 0.7 0.7 0.8 96.4 0.4 1.2 0.8 0.6 0.7
Whshl 85.1 0.2 2.9 3.7 2.1 6.0 81.9 0.0 2.6 2.2 3.2 10.0 81.9 0.0 2.6 2.1 3.2 10.2
Rtail 90.6 0.1 2.5 2.7 1.3 2.8 92.0 0.0 2.1 2.2 1.2 2.5 88.8 0.0 3.2 3.2 1.6 3.1
Meals 78.8 0.2 4.4 6.4 3.2 7.0 80.5 0.0 3.9 5.5 3.3 6.8 79.8 0.0 4.3 5.2 3.4 7.2
Banks 94.2 0.9 1.8 0.7 1.0 1.5 96.4 0.2 1.0 0.3 0.9 1.3 97.3 0.2 1.0 0.4 0.5 0.7
Insur 94.5 0.3 2.4 1.4 0.7 0.7 93.9 0.0 2.6 1.5 0.8 1.1 93.4 0.0 2.8 1.6 0.9 1.2
RlEst 97.2 0.4 0.7 1.4 0.1 0.1 97.5 0.1 0.5 0.3 0.4 1.3 96.8 0.0 0.7 0.4 0.4 1.6
Fin 87.0 0.2 3.6 3.2 2.0 4.1 86.6 0.1 3.9 3.0 2.2 4.3 86.8 0.1 3.9 2.8 2.1 4.3
Other 82.5 0.1 2.5 2.5 4.2 8.2 80.3 0.0 2.9 2.4 4.5 9.8 79.8 0.0 3.1 2.4 4.6 10.1

Average 89.1 0.2 2.7 2.7 1.8 3.5 89.1 0.1 2.6 2.3 1.9 4.0 88.6 0.1 2.8 2.3 1.9 4.2
Min 69.5 0.0 0.7 0.5 0.1 0.1 73.4 0.0 0.3 0.2 0.1 0.1 73.6 0.0 0.4 0.2 0.1 0.1
Max 97.2 1.0 4.9 6.5 6.1 13.2 99.4 1.2 4.4 5.8 4.9 12.2 99.1 1.2 4.8 6.1 4.9 12.5

This table shows the percentage that each industry spends in the different regimes: normal (N), crash (C),
good news (G), bubble (B), deflation crash (DC) and deflation normal (DN). We calculate this percentage
as the sum of the smoothed inference probabilities over time divided by the number of observations. We
aggregate the percentages for the L good news regimes. We show the identification for each risk factor
model: the CAPM, the 3-Factor Model of Fama and French (1993) and the 4-Factor Model of Carhart
(1997). We put the period of good news equal to L = 6 months, and the upper bound for crashes at
k = −1.
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Table 8: Optimal weights for strategy with different rebalancing frequencies

(a) Process starts in the bubble regime with certainty, Pr[St = B] = 1

Strategy / Horizon 1 2 3 4 6 12 24 60

Buy-and-hold 21.2 13.7 7.5 2.8 −3.8 −9.3 −12.2 −14.6
h = 6 − − − − 0.0 −3.3 −3.5 0.0
h = 4 − − − 4.0 − 6.5 6.1 5.7
h = 3 − − 7.5 − 10.6 11.1 10.2 8.9
h = 2 − 13.7 16.5 17.0 16.7 15.8 14.7
h = 1 21.2 26.0 27.1 27.1 27.6 25.5 23.0 22.8

(b) Process starts in the normal regime with certainty, Pr[St = N] = 1

Strategy / Horizon 1 2 3 4 6 12 24 60

Buy-and-hold 8.0 8.8 9.6 10.4 12.0 13.9 14.5 11.6
h = 6 − − − − 11.1 11.1 11.1 11.0
h = 4 − − − 10.8 − 10.8 10.8 10.7
h = 3 − − 9.6 − 8.9 8.9 8.9 8.8
h = 2 − 8.8 8.7 8.7 8.7 8.7 8.7
h = 1 8.0 6.4 6.4 6.4 6.4 6.4 6.4 6.5

(c) Process starts in the normal or bubble regime with equal probability, Pr[St = B] = Pr[St = N] = 1/2

Strategy / Horizon 1 2 3 4 6 12 24 60

Buy-and-hold 21.2 13.7 7.5 2.8 −3.8 −9.3 −12.2 −14.6
h = 6 − − − − 0.0 −3.3 −3.5 0.0
h = 4 − − − 4.0 − 6.5 6.1 5.7
h = 3 − − 7.5 − 10.6 11.1 10.2 8.9
h = 2 − 13.7 16.5 17.0 16.7 15.8 14.7
h = 1 21.2 26.0 27.1 27.1 27.6 25.5 23.0 22.8

This table shows the optimal allocation to the industry asset for month t + 1 (in %) for different invest-
ment horizons (in months), different rebalancing frequencies and different starting situations. We report
portfolio weights for a buy-and-hold strategy, and strategies with rebalacing every 1, 2, 3, 4 and 6 months.
The optimal portfolios are found by numerically solving Equation (22), as described in Appendix A. We
construct 10,000 draws per regime, and construct a grid for the inference probabilities with a precision
threshold of 0.45. The scale factor is equal to the industry average. The risk-free rate is constant at 0.30%
per month. The risk-aversion coefficient is equal to five. The results are based on the Fama-French model.
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Figure 1: Graph of the transitions in the bubble model

NC
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This graph shows the structure of the transition in our model. Each node (drawn as a
circle) indicates a different regimes: normal (N), crash (C), good news (Gl, l = 1, 2, . . . , L),
bubble (B), deflation crash (DC) and deflation normal (DN). The arcs between the nodes
indicate possible transitions.

41



Figure 2: Identification of Regimes over Time
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(b) CAPM, deflation regimes
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(c) Fama-French Model, bubble regime
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(d) Fama-French Model, deflation regimes
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(e) Carhart Model, bubble regime
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(f) Carhart Model, deflation regimes

This figure shows the identification of the different regimes over time. The red lines in the left panels
correspond with the bubble regime, the green lines in the right panels with the deflation crash regime,
and the blue lines in the right panels with the deflation crash and normal regimes together. To calculate
the values for a regime we sum the smoothed inference probabilities at each point in time over the 48
industries. We show the identification for each risk factor model: (a + b): the CAPM, (c+d) the 3-Factor
Model of Fama and French (1993) and (e+f) the 4-Factor Model of Carhart (1997). We put the period of
good news equal to L = 6 months, and the upper bound for crashes at k = −1.
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Figure 3: Forecasts of Regime Probabilities from the bubble regime
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(b) Fama-French Model

0 5 10 15 20 25 30 35 40 45 50 55 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Carhart Model

This figure shows the forecasts of the probabilities with which a regime prevails for horizons from 1 to 60
months. All predictions start from the bubble regime, i.e. Pr[St = B] = 1. The blue line corresponds with
the bubble regime, the green line with the deflation crash regime, the purple line with the deflation normal
regime, and the red line with the normal regime. The subfigures correspond with the different risk factor
models: the CAPM, the 3-Factor model of Fama and French (1993) and the 4-Factor model of Carhart
(1997). The transition matrix is given in Table 1 and the estimates in Panel C of Table 5.
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Figure 4: Abnormal Returns Forecasts
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(c) Fama-French model, expected returns
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(d) Fama-French model, volatilities
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(e) Carhart model, expected returns
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(f) Carhart model, volatilities

This figure shows forecasts of the expected abnormal returns (left panels) and their volatilities (right panels)
(both in %) as a function of the forecast horizon (in months). The forecasts are based on estimates for the
regime switching models in Table 5 and multiplied by the average scale factor. The subfigures correspond
with the different risk factor models: (a,b): the CAPM, (c,d) the 3-Factor model of Fama and French
(1993) and (e,f) the 4-Factor model of Carhart (1997). The red lines show the forecasts when the regime
process starts with certainty in the bubble regime (Pr[St = B] = 1); the blue line when it starts with
certainty in the normal regime (Pr[St = N] = 1), and the green line with the probability distribution at
time t equal to the ergodic probabilities.
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Figure 5: Cumulative Return Forecasts
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(d) Fama-French model, volatilities
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(f) Carhart model, volatilities

This figure shows the expectations (left panels) and volatilities (right panels) of the cumulative returns (in
% per month) as a function of the forecast horizon (in months). The red lines show the forecasts when the
regime process starts with certainty in the bubble regime (Pr[St = B] = 1); the blue line when it starts
with certainty in the normal regime (Pr[St = N] = 1), the purple line when the regime process starts with
equal probability in the normal or bubble regime (Pr[St = B] = Pr[St = N] = 1/2), and the green line when
the probability distribution at time t are equal to the ergodic probabilities. The returns are constructed
based on 100,000 simulations for one up to sixty consecutive returns, consisting of bootstraps for the excess
market return and Monte Carlo draws for the regime process and the distribution of the innovations. The
scale factor is equal to the industry average. The risk-free rate is constant at 0.30% per month. For
each simulation, we calculate the portfolio value by compounding, starting with an investment of 1. We
calculate the average and the variance of the logarithmic final return over the different simulations, and
divide them by the holding period to arrive at monthly expected returns and volatilities.45



Figure 6: Weights for a buy and hold strategy
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(b) Fama-French Model
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(c) Carhart Model

This figure shows the optimal buy-and-hold allocation to the industry asset (in %) as a function of the
investment horizon (in months). The red lines show the portfolio when the regime process for the industry
starts with certainty in the bubble regime (Pr[St = B] = 1); the blue line when it starts with certainty in
the normal regime (Pr[St = N] = 1), the purple line when it starts with equal probability in the normal
or bubble regime (Pr[St = B] = Pr[St = N] = 1/2), and the green line when the probability distribution
at time t is equal to the ergodic probabilities. The optimal portfolios are found by numerically solving
Equation (21). We approximate the expectations by constructing the compounded returns from 100,000
simulations for one up to sixty consecutive monthly returns, consisting of bootstraps for the excess market
return and Monte Carlo draws for the regime process and the distribution of the innovations. The scale
factor is equal to the industry average. The risk-free rate is constant at 0.30% per month. The risk-aversion
coefficient is equal to five.
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Figure 7: Weights for a strategy with monthly rebalancing
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(c) Carhart Model

This figure shows the optimal allocation to the industry asset for month t+ 1 (in %) as a function of the
investment horizon (in months). The investor can rebalance his position every month. The red lines show
the portfolio when the regime process for the industry starts with certainty in the bubble regime (Pr[St =
B] = 1); the blue line when it starts with certainty in the normal regime (Pr[St = N] = 1), the purple line
when it starts with equal probability in the normal or bubble regime (Pr[St = B] = Pr[St = N] = 1/2), and
the green line when the probability distribution at time t is equal to the ergodic probabilities. The optimal
portfolios are found by numerically solving Equation (22), as described in Appendix A. We construct
10,000 draws per regime, and construct a grid for the inference probabilities with a precision threshold of
0.45. The scale factor is equal to the industry average. The risk-free rate is constant at 0.30% per month.
The risk-aversion coefficient is equal to five.
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